ENGGINEERING TECHNOLOGY - M.E.T.

College of Aeronautics and Engineering
www.kent.edu/cae

Contact Information
- Program Coordinator: D. Blake Stringer | Stephanie Fussell
 | caegraduatestudies@kent.edu
 | 330-672-2892
- Speak with an Admissions Counselor (gradadmissions@kent.edu)

Fully Offered
- Kent Campus

Admission Terms
- Fall
- Spring
- Summer

Examples of Possible Careers*
Aerospace engineering and operations technologists and technicians
- 7.0% faster than the average
- 11,900 number of jobs
- $68,570 potential earnings

Calibration technologists and technicians and engineering technologists and technicians, except drafters, all other
- 2.1% slower than the average
- 91,600 number of jobs
- $64,190 potential earnings

Civil engineering technologists and technicians
- 2.5% slower than the average
- 70,900 number of jobs
- $54,080 potential earnings

Electrical and electronic engineering technologists and technicians
- 1.5% slower than the average
- 125,800 number of jobs
- $67,550 potential earnings

Electro-mechanical and mechatronics technologists and technicians
- 3.0% about as fast as the average
- 14,600 number of jobs
- $59,800 potential earnings

Additional Careers
- Research

*Note
Source of occupation titles and labor data is from the U.S. Bureau of Labor Statistics’ Occupational Outlook Handbook. Data comprises projected percent change in employment over the next 10 years; nation-wide employment numbers; and the yearly median wage at which half of the workers in the occupation earned more than that amount and half earned less.

Description
The Master of Engineering Technology degree offers a curriculum that provides students with advanced technical and management knowledge and skills that meet the needs of the technical workforce in industry and business.

The Engineering Technology major comprises the following concentrations:
- Computer Engineering Technology
- Mechanical Engineering Technology
- Quality Systems and Engineering Management Technology

Admission Requirements
- Bachelor’s degree from an accredited college or university for unconditional admissions
- Minimum 3.000 undergraduate GPA on a 4.000 point scale for unconditional admissions
- Official transcript(s)
- Goal statement (one page) describing applicant’s background, interests, and goals and how this program will help to achieve those goals
- Three letters of recommendation
- English language proficiency - all international students must provide proof of English language proficiency (unless they meet specific exceptions) by earning one of the following:
 - Minimum 550 TOEFL PBT score (paper-based version)
 - Minimum 79 TOEFL IBT score (Internet-based version)
 - Minimum 77 MELAB score
 - Minimum 6.5 IELTS score
 - Minimum 58 PTE score
 - Minimum 100 Duolingo test score

An admissions committee of the College of Aeronautics and Engineering graduate faculty review all applications. Admission will be considered by examination of the applicant’s background on an individual basis. Applicants with deficiencies may be admitted conditionally, which may include a requirement for completion of appropriate undergraduate coursework that will not count toward the master’s degree.

For more information about graduate admissions, please visit the Graduate Studies admission website. For more information on international admission, visit the Office of Global Education’s admission website.
Applicants with an undergraduate degree in an approved science or technology related discipline, and who have a minimum composite undergraduate 3.000 GPA, will be admitted unconditionally. In exceptional cases, an applicant without a technical degree or with a composite GPA below 3.000 may be admitted, conditionally or unconditionally, based on strong letters of recommendation or significant experience related to the intended area of study. These applicants should submit any additional information that may assist the admissions committee in assessing their academic, technical or professional background and abilities. The additional information may include a résumé or professional portfolio summarizing any relevant technical competencies, professional experience, and any academic and professional achievements in areas related to the applicant’s intended studies.

The letters should come from an individual familiar with the applicant’s academic or professional background and abilities. The letters should attest to the applicant’s potential to complete graduate work successfully. Letters of recommendation from persons who are experienced professionals in the applicant’s intended field of study or in a closely related area are acceptable. Recommendations from former or current professors are preferred.

Program Learning Outcomes

Graduates of this program will be able to:

1. Apply engineering and technology management principles and practices.
2. Demonstrate knowledge of planning, organizing, decision-making and management of technology and complex systems.
3. Demonstrate the ability to apply problem solving and creative thinking skills in technical and interdisciplinary settings.
4. Demonstrate knowledge of the principles, practices and application of personal and professional ethics and conduct that arise in business, engineering and applied technology environments.
5. Understand and apply research methods, research development, research analysis and research implementation in engineering and technology-related areas.
6. Demonstrate knowledge and research design, statistical analysis and the development and implementation of applied engineering and technology in various engineering, science and technology venues.

Program Requirements

Major Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 60000</td>
<td>PROJECT MANAGEMENT IN A TECHNOLOGICAL ENVIRONMENT</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 60030</td>
<td>QUANTITATIVE METHODS I</td>
<td>2</td>
</tr>
<tr>
<td>ENGR 60040</td>
<td>QUANTITATIVE METHODS II</td>
<td>2</td>
</tr>
<tr>
<td>ENGR 60078</td>
<td>RESEARCH METHODS IN TECHNOLOGY I</td>
<td>2</td>
</tr>
<tr>
<td>ENGR 67010</td>
<td>ETHICS, TECHNOLOGY AND THE ENVIRONMENT</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Engineering (ENGR) Electives</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 61099</td>
<td>ENGINEERING TECHNOLOGY CAPSTONE</td>
<td>3</td>
</tr>
</tbody>
</table>
Quality Systems and Engineering Management Technology Concentration Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concentration Requirements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concentration Electives, choose from the following:</td>
<td>12</td>
</tr>
<tr>
<td>ENGR 57200</td>
<td>SYSTEMS ENGINEERING</td>
<td></td>
</tr>
<tr>
<td>ENGR 60003</td>
<td>SIX-SIGMA: TOOLS AND APPLICATIONS FOR TECHNOLOGY MANAGEMENT</td>
<td></td>
</tr>
<tr>
<td>ENGR 63050</td>
<td>TRIZ: THEORY OF INVENTIVE PROBLEM-SOLVING</td>
<td></td>
</tr>
<tr>
<td>ENGR 65500</td>
<td>QUALITY SYSTEMS AND INDUSTRIAL PRODUCTIVITY</td>
<td></td>
</tr>
<tr>
<td>ENGR 65700</td>
<td>APPLIED RELIABILITY ENGINEERING</td>
<td></td>
</tr>
<tr>
<td>ENGR 65800</td>
<td>BURN-IN AND STRESS-TESTING FOR RELIABILITY</td>
<td></td>
</tr>
<tr>
<td>ENGR 67220</td>
<td>LIFE CYCLE DESIGN I</td>
<td></td>
</tr>
<tr>
<td>ENGR 67221</td>
<td>LIFE CYCLE DESIGN II</td>
<td></td>
</tr>
<tr>
<td>MIS 64026</td>
<td>GLOBAL SUPPLY CHAIN MANAGEMENT AND SUSTAINABLE STRATEGIES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engineering (ENGR) Electives with advisor approval</td>
<td></td>
</tr>
</tbody>
</table>

Minimum Total Credit Hours: 12