MATERIALS SCIENCES - PH.D.

College of Arts and Sciences
www.kent.edu/materials-science

Contact Information
• Program Director: Antal Jakli | ajakli@kent.edu | 330-672-4886
• Chat with an Admissions Counselor

Fully Offered
• Kent Campus

Admission Terms
• Fall

Examples of Possible Careers*

Computer and information research scientists
• 15.4% much faster than the average
• 32,700 number of jobs
• $126,830 potential earnings

Physical scientists, all other
• -3.0% decline
• 22,800 number of jobs
• $107,210 potential earnings

Physicists
• 7.3% faster than the average
• 18,200 number of jobs
• $129,850 potential earnings

Biochemists and biophysicists
• 4.0% about as fast as the average
• 34,600 number of jobs
• $94,270 potential earnings

Biological scientists, all other
• 2.2% slower than the average
• 44,700 number of jobs
• $85,290 potential earnings

Chemists
• 4.7% about as fast as the average
• 86,700 number of jobs
• $79,300 potential earnings

Chemical engineers
• 4.4% about as fast as the average
• 32,600 number of jobs
• $108,540 potential earnings

*Note
Source of occupation titles and labor data is from the U.S. Bureau of Labor Statistics' Occupational Outlook Handbook. Data comprises projected percent change in employment over the next 10 years; nation-wide employment numbers; and the yearly median wage at which half of the workers in the occupation earned more than that amount and half earned less.

Description
The Ph.D. degree in Materials Science provides students with extensive scientific training, cutting-edge research opportunities and engineering skills necessary for a variety of careers in academy and industry. Program faculty and students conduct research through Kent State’s participating departments and the Advanced Materials and Liquid Crystal Institute. Such research includes liquid crystal synthesis and molecular design; properties of liquid crystals and related advanced materials; lyotropic liquid crystals and bio-related materials; opto-electronics; and nanoscience and nanotechnologies. These important research foci are inherently interdisciplinary.

Admission Requirements
• Bachelor's degree or higher from an accredited college or university for unconditional admission
• Minimum 3.000 GPA on a 4.000 point scale for unconditional admission
• Official transcript(s)
• GRE scores (general and subject test in physics or chemistry) are not required, but strongly recommended
• Goal statement
• Two letters of recommendation
• English language proficiency - all international students must provide proof of English language proficiency (unless they meet specific exceptions) by earning one of the following:
 • Minimum 525 TOEFL score (paper-base version)
 • Minimum 71 TOEFL score (Internet-based version)
 • Minimum 74 MELAB score
 • Minimum 6.0 IELTS score
 • Minimum 50 PTE score
 • Minimum 100 Duolingo English Test score

Admission will be granted by examination of the student’s background on an individual basis. Students from a variety of undergraduate majors—such as physics, chemistry, engineering and materials science—are invited to apply.

For more information about graduate admissions, please visit the Graduate Studies website. For more information on international admission, visit the Office of Global Education’s admission website.

Program Learning Outcomes
Graduates of this program will be able to:
1. Develop an advanced understanding of the fundamental science of liquid crystals and related advanced materials and ability to apply acquired knowledge of physical and chemical properties of soft materials and devices such as liquid crystals, polymers, colloids and active matter.
2. Gain experience in presenting scientific data in research publications, articles, posters and oral presentations.
3. Apply acquired knowledge to the discovery of new advanced materials and development of advanced materials-based devices and applications.

Program Requirements

Major Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTSC 72242</td>
<td>CHARACTERIZATION OF SOFT MATTER</td>
<td>3</td>
</tr>
<tr>
<td>MTSC 73000</td>
<td>PHYSICS OF SOFT MATTER</td>
<td>3</td>
</tr>
<tr>
<td>MTSC 73015</td>
<td>CHEMISTRY OF SOFT MATTER</td>
<td>3</td>
</tr>
<tr>
<td>MTSC 73020</td>
<td>APPLICATIONS OF SOFT MATTER</td>
<td>3</td>
</tr>
<tr>
<td>MTSC 80199</td>
<td>DISSERTATION</td>
<td>30</td>
</tr>
</tbody>
</table>

Approved Electives, choose from the following: 18-48

- BSCI 70158 MOLECULAR BIOLOGY
- BSCI 70220 BIOINFORMATICS
- BSCI 71120 BIOLOGICAL LIGHT MICROSCOPY
- CHEM 70352 INORGANIC MATERIALS CHEMISTRY
- CHEM 70451 ORGANIC MATERIALS CHEMISTRY
- CHEM 70478 SYNTHESIS OF ORGANIC LIQUID CRYSTALS
- CHEM 70559 NANOMATERIALS
- CHEM 70571 SURFACE CHEMISTRY
- CHEM 70254 BIOMEMBRANES
- MTSC 72241 STATISTICAL MECHANICS OF SOFT MATTER
- MTSC 72249 LABVIEW FOR DATA ACQUISITION AND INSTRUMENT CONTROL
- MTSC 72335 ADVANCED LIQUID CRYSTALLINE AND POLYMERIC MATERIALS
- MTSC 72450 LIQUID CRYSTAL OPTICS I: THEORY
- MTSC 72452 LIQUID CRYSTAL OPTICS II: OPTICAL SYSTEMS
- MTSC 72460 LIQUID CRYSTAL MATERIALS SCIENCE
- MTSC 72462 LIQUID CRYSTAL SCIENCE: PHYSICAL PROPERTIES
- MTSC 72640 LIQUID CRYSTAL, POLYMER AND COLLOID COMPOSITES
- MTSC 72643 ELECTRO-OPTICS OF LIQUID CRYSTALS: MODELING AND DEVICE DESIGN
- MTSC 72647 STRUCTURED FLUIDS
- MTSC 72650 COMPUTATIONAL MATERIALS SCIENCE
- MTSC 72651 NANOBIO TECHNOLOGY
- MTSC 73010 LYOTROPIC LIQUID CRYSTALS
- MTSC 73025 ACTIVE MATTER
- MTSC 73100 EMERGING DISPLAY TECHNOLOGIES
- MTSC 74491 SEMINAR: LIQUID CRYSTALS
- MTSC 74495 SPECIAL TOPICS IN CHEMICAL PHYSICS
- MTSC 75006 LIQUID CRYSTAL DEVICE PROTOTYPING
- MTSC 75008 LIQUID CRYSTAL DEVICE CONSTRUCTION
- MTSC 75032 SCIENTIFIC COMMUNICATION
- MTSC 80498 RESEARCH
- PHY 76403 ADVANCED CONDENSED MATTER PHYSICS
- PHY 78401 LIQUID CRYSTAL PHYSICS

Additional courses with advisor approval

Minimum Total Credit Hours for Post-Baccalaureate Students: 90
Minimum Total Credit Hours for Post-Master's Students: 60

1 Each doctoral candidate, upon admission to candidacy, must register for MTSC 80199 for a total of 30 credit hours. It is expected that a doctoral candidate will continuously register for Dissertation I, and thereafter MTSC 80299, each semester, until all requirements for the degree have been met. A prospectus of the dissertation research project is required for all Ph.D. candidates. The prospectus is prepared jointly with the student's dissertation advisor. The prospectus must be approved by the members of the student's dissertation committee. A dissertation presenting and interpreting results of original research is required for the Ph.D. degree. Following acceptance of the dissertation by the dissertation committee, the final degree requirement is the satisfactory completion of the final oral exam (defense of dissertation) in front of a committee of graduate materials science faculty and representatives from other departments in the College of Arts and Sciences.

2 Post-baccalaureate students may apply a maximum 15 credit hours of research toward the degree. Post-master's students may apply a maximum 9 credit hours of research toward the degree.

Candidacy Requirement

In addition to satisfying the course work, the student must pass the materials science candidacy examination. The examination is divided into two parts, a written and an oral exam. The written exam is scheduled first followed by the oral exam. The exams will cover the core courses of the materials science program taken during the first year. A student who does not pass the candidacy exam the first time, may take it a second time. The student’s first attempt at candidacy will take place in August, during the week before the start of the fall semester of the student’s second year of study. The second attempt will take place in January, during the week before the start of the spring semester of the student’s second year of study. A request for exception will be considered for medical reasons or for other unpredictable circumstances. Requests must be submitted in writing with supporting documentation prior to the test date and must be approved by the candidacy exam committee and by the director of the materials science program. If the student fails the second attempt, they cannot continue towards the doctoral degree, but may complete the requirements for the Master’s of Science degree.