MATHEMATICS - B.S.

College of Arts and Sciences
Department of Mathematical Sciences
www.kent.edu/math

Examples of Possible Careers*

Mathematical science teachers, postsecondary
- 1.3% slower than the average
- 60,100 number of jobs
- $73,650 potential earnings

Mathematicians
- 3.0% about as fast as the average
- 2,900 number of jobs
- $110,860 potential earnings

Natural sciences managers
- 4.8% about as fast as the average
- 71,400 number of jobs
- $137,940 potential earnings

Secondary school teachers, except special and career/technical education
- 3.8% about as fast as the average
- 1,050,800 number of jobs
- $62,870 potential earnings

Contact Information
- Program Coordinator: Xiaoyu Zheng | xzheng3@kent.edu | 330-672-9089
- Speak with an Advisor
 - Kent Campus
 - Stark Campus
- Chat with an Admissions Counselor

Fully Offered
- Kent Campus
- Stark Campus

*Note
Source of occupation titles and labor data is from the U.S. Bureau of Labor Statistics' Occupational Outlook Handbook. Data comprises projected percent change in employment over the next 10 years; nation-wide employment numbers; and the yearly median wage at which half of the workers in the occupation earned more than that amount and half earned less.

Description
The Bachelor of Science degree in Mathematics comprises core areas in algebra (number systems, equations, discrete structures), analysis (functions, limits, continuous processes), geometry (space, shape, form) and associated generalizations and abstractions.

The B.S. degree program is recommended for students interested in a flexible option of careers or graduate study in mathematics. Coupled with the Education minor, the program can lead to Ohio teacher licensure.

Students may apply early to the M.S.in Pure Mathematics program and double count 9 credit hours of graduate courses toward both degree programs. See the Combined Bachelor's/Master's Degree Program policy in the University Catalog for more information.

Admission Requirements
The university affirmatively strives to provide educational opportunities and access to students with varied backgrounds, those with special talents and adult students who graduated from high school three or more years ago.

Freshman Students on the Kent Campus: The freshman admission policy on the Kent Campus is selective. Admission decisions are based upon the following: cumulative grade point average, ACT and/or SAT scores, strength of high school college preparatory curriculum and grade trends. The Admissions Office at the Kent Campus may defer the admission of students who do not meet admissions criteria but who demonstrate areas of promise for successful college study. Deferred applicants may begin their college coursework at one of seven regional campuses of Kent State University. For more information on admissions, including additional requirements for some academic programs, visit the admissions website.

Freshman Students on the Regional Campuses: Kent State campuses at Ashtabula, East Liverpool, Geauga, Salem, Stark, Trumbull and Tuscarawas, as well as the Twinsburg Academic Center, have open enrollment admission for students who hold a high school diploma, GED or equivalent.

English Language Proficiency Requirements for International Students:
All international students must provide proof of English language proficiency (unless they meet specific exceptions) by earning a minimum 525 TOEFL score (71 on the Internet-based version), minimum 75 MELAB score, minimum 6.0 IELTS score, minimum 48 PTE score or minimum 100 DET score; or by completing the ESL level 112 Intensive Program. For more information on international admission, visit the Office of Global Education's admission website.

Transfer, Transitioning and Former Students: For more information about admission criteria for transfer, transitioning and former students, please visit the admissions website.

Program Learning Outcomes
Graduates of this program will be able to:

1. Reason in mathematical arguments at a level appropriate to the discipline, including using precise definitions, articulating assumptions and reasoning logically to conclusions.
2. Engage effectively in problem solving, including exploring examples, devising and testing conjectures and assessing the correctness of solutions.
3. Approach mathematical problems creatively, including trying multiple approaches and modifying problems when necessary to make them more tractable.
4. Communicate mathematics clearly both orally and in writing.
5. Understand and appreciate connections among different subdisciplines of mathematics.
6. Understand and appreciate connections between mathematics and other disciplines.
7. Be aware of and understand a broad range of mathematical subdisciplines.

Professional Licensure Disclosure
This program is designed to prepare students to sit for applicable licensure or certification in Ohio. If you plan to pursue licensure or certification in a state other than Ohio, please review state educational requirements for licensure or certification and contact information for state licensing boards at Kent State's website for professional licensure disclosure.

University Requirements
All students in a bachelor's degree program at Kent State University must complete the following university requirements for graduation.

NOTE: University requirements may be fulfilled in this program by specific course requirements. Please see Program Requirements for details.

Destination Kent State: First Year Experience
- Course is not required for students with 25 transfer credits, excluding College Credit Plus, or age 21+ at time of admission.
- Kent Core (see table below) 36-37
- Experiential Learning Requirement (ELR) varies
- Writing-Intensive Course (WIC) 1 course
- Upper-Division Requirement 39 (or 42)
- Some bachelor's degrees require students to complete more than 120 credit hours.

Kent Core Requirements
- Kent Core Composition (KCMP) 6
- Kent Core Mathematics and Critical Reasoning (KMCR) 3
- Kent Core Humanities and Fine Arts (KHUM/KFA) (min one course each) 9
- Kent Core Social Sciences (KSS) (must be from two disciplines) 6
- Kent Core Basic Sciences (KBS/KLAB) (must include one laboratory) 6-7
- Kent Core Additional (KADL) 6

Total Credit Hours: 36-37

Program Requirements

Major Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 12002</td>
<td>ANALYTIC GEOMETRY AND CALCULUS I (KMCR) (min C grade)</td>
<td>5</td>
</tr>
<tr>
<td>MATH 20011</td>
<td>DECISION-MAKING UNDER UNCERTAINTY</td>
<td>3</td>
</tr>
<tr>
<td>MATH 21001</td>
<td>LINEAR ALGEBRA (min C grade)</td>
<td>3</td>
</tr>
<tr>
<td>MATH 22005</td>
<td>ANALYTIC GEOMETRY AND CALCULUS III (min C grade)</td>
<td>4</td>
</tr>
<tr>
<td>MATH 31011</td>
<td>PROOFS IN DISCRETE MATHEMATICS (min C grade)</td>
<td>3</td>
</tr>
<tr>
<td>MATH 32044</td>
<td>ORDINARY DIFFERENTIAL EQUATIONS</td>
<td>3</td>
</tr>
<tr>
<td>MATH 41001</td>
<td>MODERN ALGEBRA I (ELR) (WIC) (min C grade)</td>
<td>3</td>
</tr>
<tr>
<td>MATH 41002</td>
<td>MODERN ALGEBRA II (ELR) (WIC)</td>
<td>3</td>
</tr>
<tr>
<td>MATH 41021</td>
<td>THEORY OF MATRICES</td>
<td>3</td>
</tr>
<tr>
<td>MATH 42001</td>
<td>ANALYSIS I (ELR) (WIC) (min C grade)</td>
<td>3</td>
</tr>
<tr>
<td>MATH 42002</td>
<td>ANALYSIS II (ELR) (WIC)</td>
<td>3</td>
</tr>
<tr>
<td>PHY 23101</td>
<td>GENERAL UNIVERSITY PHYSICS I (KBS) (KLAB)</td>
<td>5</td>
</tr>
</tbody>
</table>

Computer Science Elective, choose from the following: 4
- CS 10062 | PROGRAMMING FOR PROBLEM SOLVING IN SCIENCES |
- CS 13001 | COMPUTER SCIENCE I: PROGRAMMING AND PROBLEM SOLVING |
- CS 13011 & CS 13012 | COMPUTER SCIENCE IA: PROCEDURAL PROGRAMMING and COMPUTER SCIENCE IB: OBJECT ORIENTED PROGRAMMING |

Pure Mathematics Electives, choose from the following: 9
- MATH 42021 | GRAPH THEORY AND COMBINATORICS |
- MATH 42048 | COMPLEX VARIABLES |
- MATH 45011 | DIFFERENTIAL GEOMETRY |
- MATH 45021 | EUCLIDEAN GEOMETRY |
- MATH 45022 | LINEAR GEOMETRY |
- MATH 46001 | ELEMENTARY TOPOLOGY |
- MATH 47011 | THEORY OF NUMBERS |

Applied Mathematics Sequence, choose from the following: 6-8
- MATH 40011 & MATH 40012 | PROBABILITY THEORY AND APPLICATIONS and THEORY OF STATISTICS |
- MATH 40056 & MATH 40056 | ACTUARIAL MATHEMATICS I (ELR) (WIC) and ACTUARIAL MATHEMATICS II |
- MATH 42031 & MATH 42039 | MATHEMATICAL MODELS AND DYNAMICAL SYSTEMS and MODELING PROJECTS (ELR) (WIC) |
- MATH 42041 & MATH 42045 | ADVANCED CALCULUS and PARTIAL DIFFERENTIAL EQUATIONS |
- MATH 42201 & MATH 42202 | NUMERICAL COMPUTING I and NUMERICAL COMPUTING II |

Allied Area Electives, choose from the following: 3
- BSCI 30050 | HUMAN GENETICS |
- BSCI 40020 | BIOLOGY OF AGING |
- CHEM 30050 | INTRODUCTION TO MATERIALS CHEMISTRY |
- CHEM 30105 | ANALYTICAL CHEMISTRY I |
- CHEM 30106 | ANALYTICAL CHEMISTRY II |
- CHEM 30301 | INORGANIC CHEMISTRY I |
- CHEM 40302 & CHEM 40303 | INORGANIC CHEMISTRY II and III |
- CHEM 40555 | PHYSICAL CHEMISTRY I |
- CHEM 40556 | PHYSICAL CHEMISTRY II |
- CHEM 40559 | NANOMATERIALS |
- CS 33007 | INTRODUCTION TO DATABASE SYSTEM DESIGN |
CS 33101 STRUCTURE OF PROGRAMMING LANGUAGES
CS 33211 OPERATING SYSTEMS
CS 33901 SOFTWARE ENGINEERING
CS 35101 COMPUTER ORGANIZATION
CS 35201 COMPUTER COMMUNICATION NETWORKS
CS 38101 INTRODUCTION TO GAME PROGRAMMING
CS 43006 THEORY OF OBJECT-ORIENTED PROGRAMMING
CS 43111 STRUCTURE OF COMPILERS
CS 43202 SYSTEMS ADMINISTRATION
CS 43203 SYSTEMS PROGRAMMING
CS 43301 SOFTWARE DEVELOPMENT FOR ROBOTICS
CS 43305 ADVANCED DIGITAL DESIGN
CS 43401 SECURE PROGRAMMING
CS 44001 COMPUTER SCIENCE III-PROGRAMMING PATTERNS
CS 44105 WEB PROGRAMMING I
CS 44106 WEB PROGRAMMING II
CS 44201 ARTIFICIAL INTELLIGENCE
CS 45203 COMPUTER NETWORK SECURITY
CS 45231 INTERNET ENGINEERING
CS 46101 DESIGN AND ANALYSIS OF ALGORITHMS
CS 47101 COMPUTER GRAPHICS
CS 47205 INFORMATION SECURITY
CS 47206 DATA SECURITY AND PRIVACY
CS 47207 DIGITAL FORENSICS
CS 47221 INTRODUCTION TO CRYPTOLOGY
CS 48101 GAME ENGINE CONCEPTS
GEOG 31062 FUNDAMENTALS OF METEOROLOGY
GEOG 31064 PRINCIPLES OF CLIMATOLOGY
GEOG 35065 GEOGRAPHY OF TRANSPORTATION AND SPATIAL INTERACTION
GEOG 39002 STATISTICAL METHODS IN GEOGRAPHY
GEOG 41065 APPLIED CLIMATOLOGY
GEOG 43001 SOFTWARE DEVELOPMENT FOR ROBOTICS
GEOG 46001 ELEMENTARY TOPOLOGY
GEOG 46002 APPLICATIONS OF MODERN PHYSICS
GEOG 46011 DIFFERENTIAL GEOMETRY
GEOG 46015 ADVANCED GEOPHYSICAL INFORMATION SCIENCE
GEOG 46024 NUMBERS AND GAMES
GEOG 46027 THEORETICAL PHYSICS
GEOG 46031 ADVANCED GEOPHYSICS
GEOG 46032 TECTONICS AND OROGENY
GEOG 46035 SCIENTIFIC METHODS IN GEOLOGY
ECON 32040 INTERMEDIATE MICROECONOMIC THEORY AND APPLICATIONS
ECON 32041 INTERMEDIATE MACROECONOMIC THEORY AND POLICY
ECON 32050 APPLIED ECONOMETRICS I (ELR)
ECON 32051 APPLIED ECONOMETRICS II
ECON 42060 DATA ACQUISITION, PREPARATION AND VISUALIZATION
ECON 42070 GAME THEORY
MATH 30055 MATHEMATICAL THEORY OF INTEREST
MATH 38001 HANDS-ON MATHEMATICS
MATH 40011 PROBABILITY THEORY AND APPLICATIONS
MATH 40015 APPLIED STATISTICS
MATH 40024 COMPUTATIONAL STATISTICS
MATH 40028 STATISTICAL LEARNING
MATH 40051 TOPICS IN PROBABILITY THEORY AND STOCHASTIC PROCESSES
MATH 40055 ACTUARIAL MATHEMATICS I (ELR) (WIC) 2
MATH 40058 ACTUARIAL MATHEMATICS II
MATH 40059 STOCHASTIC ACTUARIAL MODELS
MATH 42011 MATHEMATICAL OPTIMIZATION
MATH 42021 GRAPH THEORY AND COMBINATORICS
MATH 42024 NUMBERS AND GAMES
MATH 42031 MATHEMATICAL MODELS AND DYNAMICAL SYSTEMS
MATH 42039 MODELING PROJECTS (ELR) (WIC) 2
MATH 42041 ADVANCED CALCULUS
MATH 42045 PARTIAL DIFFERENTIAL EQUATIONS
MATH 42048 COMPLEX VARIABLES
MATH 42201 NUMERICAL COMPUTING I
MATH 42202 NUMERICAL COMPUTING II
MATH 45011 PROBABILITY THEORY AND APPLICATIONS
MATH 45012 THEORETICAL STATISTICS
MATH 45015 APPLIED STATISTICS
MATH 45024 COMPUTATIONAL STATISTICS
MATH 45070 MATHEMATICAL METHODS IN PHYSICS
MATH 45072 DATA ANALYSIS AND COMPUTATIONAL PHYSICS TECHNIQUES
MATH 45075 ELECTROMAGNETIC WAVES AND MODERN OPTICS
MATH 45080 APPLIED CALCULUS
MATH 45085 GAME THEORY
MATH 45090 ECONOMETRICS
MATH 45201 ELECTROMAGNETIC THEORY
MATH 45301 THERMAL PHYSICS
MATH 45401 MATHEMATICAL METHODS IN PHYSICS
MATH 45403 DATA ANALYSIS AND COMPUTATIONAL PHYSICS TECHNIQUES
MATH 45501 ELECTROMAGNETIC WAVES AND MODERN OPTICS
MATH 45503 APPLIED ECONOMETRICS II
MATH 46101 QUANTUM MECHANICS
MATH 46301 INTRODUCTION TO NUCLEAR AND PARTICLE PHYSICS
MATH 46401 INTRODUCTION TO SOLID STATE PHYSICS

Additional Requirements (courses do not count in major GPA)
UC 10097 DESTINATION KENT STATE: FIRST YEAR EXPERIENCE 1

Foreign Language (see Foreign Language College Requirement below) 8
Kent Core Composition 6
Kent Core Humanities and Fine Arts (minimum one course from each) 9
Kent Core Social Sciences (must be from two disciplines) 6
Kent Core Basic Sciences 1
Kent Core Additional 6
General Electives (total credit hours depends on earning 120 credit hours, including 42 upper-division credit hours) 12

Minimum Total Credit Hours: 120

1 MATH 30011, MATH 34001 and MATH 34002 may not be applied to the major requirements.
2 A minimum C grade must be earned to fulfill the writing-intensive course requirement.
3 A course may count toward only one requirement even though it may appear in more than one course list.

Graduation Requirements

<table>
<thead>
<tr>
<th>Minimum Major GPA</th>
<th>Minimum Overall GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.000</td>
<td>2.000</td>
</tr>
</tbody>
</table>

Foreign Language College Requirement, B.S.

- Students pursuing the Bachelor of Science degree in the College of Arts and Sciences must complete 8 credit hours of foreign language.

- Minimum Elementary I and II of the same language

1 All students with prior foreign language experience should take the foreign language placement test to determine the appropriate level at which to start. Some students may start beyond the Elementary I level and will complete the requirement with fewer credit hours and fewer courses. This may be accomplished by (1) passing a course beyond Elementary I through Intermediate II level; (2) receiving credit through one of the alternative credit programs offered by Kent State University; or (3) demonstrating language proficiency comparable to Elementary II of a foreign language. When students complete the requirement with fewer than 8 credit hours and two courses, they will complete remaining credit hours with general electives.
Roadmap

This roadmap is a recommended semester-by-semester plan of study for this major. However, courses designated as critical (!) must be completed in the semester listed to ensure a timely graduation.

<table>
<thead>
<tr>
<th>Semester One</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>! MATH 12002 ANALYTIC GEOMETRY AND CALCULUS I (KMCR)</td>
<td>5</td>
</tr>
<tr>
<td>UC 10097 DESTINATION KENT STATE: FIRST YEAR EXPERIENCE</td>
<td>1</td>
</tr>
<tr>
<td>! Computer Science Elective</td>
<td>4</td>
</tr>
<tr>
<td>Foreign Language</td>
<td>4</td>
</tr>
<tr>
<td>Kent Core Requirement</td>
<td>3</td>
</tr>
<tr>
<td>Credit Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Two</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>! MATH 12003 ANALYTIC GEOMETRY AND CALCULUS II</td>
<td>5</td>
</tr>
<tr>
<td>MATH 20011 DECISION-MAKING UNDER UNCERTAINTY</td>
<td>3</td>
</tr>
<tr>
<td>! PHY 23101 GENERAL UNIVERSITY PHYSICS I (KBS) (KLAB)</td>
<td>5</td>
</tr>
<tr>
<td>Foreign Language</td>
<td>4</td>
</tr>
<tr>
<td>Credit Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Three</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>! MATH 21001 LINEAR ALGEBRA</td>
<td>3</td>
</tr>
<tr>
<td>! MATH 22005 ANALYTIC GEOMETRY AND CALCULUS III</td>
<td>4</td>
</tr>
<tr>
<td>MATH 31011 PROOFS IN DISCRETE MATHEMATICS</td>
<td>3</td>
</tr>
<tr>
<td>Kent Core Requirement</td>
<td>3</td>
</tr>
<tr>
<td>Kent Core Requirement</td>
<td>3</td>
</tr>
<tr>
<td>Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Four</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 32044 ORDINARY DIFFERENTIAL EQUATIONS</td>
<td>3</td>
</tr>
<tr>
<td>! MATH 41021 THEORY OF MATRICES</td>
<td>3</td>
</tr>
<tr>
<td>Kent Core Requirement</td>
<td>3</td>
</tr>
<tr>
<td>Kent Core Requirement</td>
<td>3</td>
</tr>
<tr>
<td>Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Five</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>! MATH 41001 MODERN ALGEBRA I (ELR) (WIC)</td>
<td>3</td>
</tr>
<tr>
<td>Allied Area Elective</td>
<td>3</td>
</tr>
<tr>
<td>Pure Mathematics Elective</td>
<td>3</td>
</tr>
<tr>
<td>Kent Core Requirements</td>
<td>3</td>
</tr>
<tr>
<td>Kent Core Requirements</td>
<td>3</td>
</tr>
<tr>
<td>Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Six</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>! MATH 41002 MODERN ALGEBRA II (ELR) (WIC)</td>
<td>3</td>
</tr>
<tr>
<td>Pure Mathematics Elective</td>
<td>3</td>
</tr>
<tr>
<td>Kent Core Requirement</td>
<td>3</td>
</tr>
<tr>
<td>Kent Core Requirement</td>
<td>1</td>
</tr>
<tr>
<td>General Electives</td>
<td>3</td>
</tr>
<tr>
<td>Credit Hours</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Seven</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>! MATH 42001 ANALYSIS I (ELR) (WIC)</td>
<td>3</td>
</tr>
<tr>
<td>Allied Area Elective</td>
<td>3</td>
</tr>
<tr>
<td>Applied Mathematics Sequence</td>
<td>3</td>
</tr>
<tr>
<td>General Electives</td>
<td>6</td>
</tr>
<tr>
<td>Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Eight</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>! MATH 42002 ANALYSIS II (ELR) (WIC)</td>
<td>3</td>
</tr>
<tr>
<td>Applied Mathematic Sequence</td>
<td>3</td>
</tr>
<tr>
<td>Minimum Total Credit Hours:</td>
<td>120</td>
</tr>
</tbody>
</table>