MATHEMATICS FOR SECONDARY TEACHERS - M.A.

College of Arts and Sciences
Department of Mathematical Sciences
www.kent.edu/math

Examples of Possible Careers*
Career/technical education teachers, postsecondary
- 1.1% slower than the average
- 124,100 number of jobs
- $55,620 potential earnings

Mathematical science teachers, postsecondary
- 1.3% slower than the average
- 60,100 number of jobs
- $73,650 potential earnings

Middle school teachers, except special and career/technical education
- 3.6% about as fast as the average
- 627,100 number of jobs
- $60,810 potential earnings

Secondary school teachers, except special and career/technical education
- 3.8% about as fast as the average
- 1,050,800 number of jobs
- $62,870 potential earnings

Contact Information
- Program Coordinator: Evgenia (Jenya) Soprunova | esopruno@kent.edu (etesta@kent.edu) | 330-672-9086
- Chat with an Admissions Counselor

Fully Offered
- Kent Campus

Admission Requirements
- Bachelor’s degree from an accredited college or university for unconditional admission
- Minimum 3.000 undergraduate GPA on a 4.000 point scale for unconditional admission
- Official transcript(s)
- Goal statement
- Résumé or vita
- Three letters of recommendation
- English language proficiency - all international students must provide proof of English language proficiency (unless they meet specific exceptions) by earning one of the following:
 - Minimum 525 TOEFL PBT score (paper-based version)
 - Minimum 71 TOEFL IBT score (Internet-based version)
 - Minimum 74 MELAB score
 - Minimum 6.0 IELTS score
 - Minimum 50 PTE score
 - Minimum 100 Duolingo English Test score

For more information about graduate admissions, please visit the Graduate Studies admission website. For more information on international admission, visit the Office of Global Education's admission website.

Program Learning Outcomes
Graduates of this program will be able to:
1. Reason in mathematical arguments, including using precise definitions, articulating assumptions and reasoning logically to conclusions.
2. Engage effectively in problem solving, including exploring examples, devising and testing conjectures and assessing the correctness of solutions.
3. Approach mathematical problems creatively, including trying multiple approaches and modifying problems when necessary to make them more tractable.
4. Communicate mathematics clearly both orally and in writing.
5. Teach high school-level mathematics.
6. Understand and appreciate connections among different subdisciplines of mathematics.
7. Be aware of and understand a broad range of mathematical subdisciplines.
8. Obtain a broader and deeper understanding of algebra, geometry and analysis and their interpretation in the K-12 curriculum.

*Source of occupation titles and labor data is from the U.S. Bureau of Labor Statistics’ Occupational Outlook Handbook. Data comprises projected percent change in employment over the next 10 years; nation-wide employment numbers; and the yearly median wage at which half of the workers in the occupation earned more than that amount and half earned less.
Program Requirements

Major Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI 67224</td>
<td>TEACHING MATHEMATICS USING COMPUTERS AND CALCULATORS</td>
<td>3</td>
</tr>
<tr>
<td>CI 67225</td>
<td>RESEARCH IN MATHEMATICS EDUCATION</td>
<td>3</td>
</tr>
<tr>
<td>CI 67791</td>
<td>SEMINAR IN MATHEMATICS EDUCATION</td>
<td>3</td>
</tr>
<tr>
<td>MATH 64091</td>
<td>SEMINAR IN MATHEMATICS EDUCATION (repeatable)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Mathematics Electives (MATH 60000 level)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Capstone Project</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mathematics Electives, choose from the following:</td>
<td>15</td>
</tr>
<tr>
<td>MATH 51021</td>
<td>THEORY OF MATRICES</td>
<td></td>
</tr>
<tr>
<td>MATH 52021</td>
<td>GRAPH THEORY AND COMBINATORICS</td>
<td></td>
</tr>
<tr>
<td>MATH 52041</td>
<td>ADVANCED CALCULUS</td>
<td></td>
</tr>
<tr>
<td>MATH 52201</td>
<td>NUMERICAL COMPUTING I</td>
<td></td>
</tr>
<tr>
<td>MATH 55021</td>
<td>EUCLIDEAN GEOMETRY</td>
<td></td>
</tr>
<tr>
<td>MATH 55022</td>
<td>LINEAR GEOMETRY</td>
<td></td>
</tr>
<tr>
<td>MATH 57011</td>
<td>THEORY OF NUMBERS</td>
<td></td>
</tr>
</tbody>
</table>

Minimum Total Credit Hours: 38

Graduation Requirements

- Minimum 32 credit hours of graduate credit with minimum 16 credit hours at the 60000 level and 22 credit hours in mathematics
- Two to three courses in each of the areas of modern algebra, geometry and analysis
- Courses in applied mathematics and current trends in teaching
- Successful passage of a final examination in general mathematics