PURE MATHEMATICS - M.A.

College of Arts and Sciences
Department of Mathematical Sciences
233 Mathematics and Computer Science Building
Kent Campus
330-672-2430
math@math.kent.edu
www.kent.edu/math

Description

The Master of Arts degree in Pure Mathematics comprises a flexible program of coursework in mathematics beyond the bachelor's degree emphasizing theoretical areas of the discipline (algebra, analysis, geometry, number theory and topology). There is no thesis requirement or option. Students in the pure mathematics Ph.D. degree can apply for this M.A. degree after completing the requisite number of credit hours.

Fully Offered At:

• Kent Campus

Admission Requirements

• Bachelor's degree from an accredited college or university for unconditional admission
• Minimum 3.00 GPA on a 4.00 point scale for unconditional admission
• Official transcript(s)
• Goal statement
• Résumé or vita
• Three letters of recommendation
• English language proficiency - all international students must provide proof of English language proficiency (unless they meet specific exceptions) by earning one of the following:
 • Minimum 525 TOEFL PBT score (paper-based version)
 • Minimum 71 TOEFL IBT score (Internet-based version)
 • Minimum 74 MELAB score
 • Minimum 6.0 IELTS score
 • Minimum 50 PTE score

For more information about graduate admissions, please visit the Graduate Studies admission website. For more information on international admission, visit the Office of Global Education’s admission website.

1 Applicants are not required to have an undergraduate degree in pure mathematics; however, they are expected to have proficiency in algebra and analysis at the level of MATH 41001, MATH 41002, MATH 42001 and MATH 42002. Those who do not meet these specific requirements may be granted conditional admission by the Graduate Studies Committee.

Program Learning Outcomes

Graduates of this program will be able to:

1. Reason in mathematical arguments, including using precise definitions, articulating assumptions and reasoning logically to conclusions.
2. Engage effectively in problem solving, including exploring examples, devising and testing conjectures and assessing the correctness of solutions.
3. Approach mathematical problems creatively, including trying multiple approaches and modifying problems when necessary to make them more tractable.
4. Communicate mathematics clearly both orally and in writing.
5. Teach university-level mathematics effectively.
6. Understand and appreciate connections among different subdisciplines of mathematics.
7. Be aware of and understand a broad range of mathematical subdisciplines.
8. Obtain a broader and deeper understanding of core mathematics disciplines of algebra and analysis.

Program Requirements

Major Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Requirements</td>
<td>Mathematics Electives, choose from the following:</td>
<td>18</td>
</tr>
<tr>
<td>MATH 61051</td>
<td>ABSTRACT ALGEBRA I & ABSTRACT ALGEBRA II</td>
<td></td>
</tr>
<tr>
<td>MATH 62051</td>
<td>FUNCTIONS OF A REAL VARIABLE I & FUNCTIONS OF A REAL VARIABLE II</td>
<td></td>
</tr>
<tr>
<td>MATH 62151</td>
<td>FUNCTIONS OF A COMPLEX VARIABLE I & FUNCTIONS OF A COMPLEX VARIABLE II</td>
<td></td>
</tr>
<tr>
<td>MATH 66051</td>
<td>INTRODUCTION TO TOPOLOGY I & INTRODUCTION TO TOPOLOGY II</td>
<td></td>
</tr>
</tbody>
</table>

Minimum Total Credit Hours: 32

Graduation Requirements

Candidates for the Master of Arts degree must pass the departmental qualifying examination at the master’s level in algebra and analysis.

Program note

Each student should submit a detailed plan of study for approval by the advisor by the time the first 16 credit hours of graduate credit have been completed.