<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
<th>Grade Mode</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>BST 50196</td>
<td>INDIVIDUAL INVESTIGATION IN BIOSTATISTICS</td>
<td>1-3</td>
<td>Standard Letter-IP</td>
<td>Graduate standing and special approval.</td>
</tr>
<tr>
<td>BST 52019</td>
<td>BIOSTATISTICS IN PUBLIC HEALTH</td>
<td>4</td>
<td>Standard Letter</td>
<td>Graduate standing.</td>
</tr>
<tr>
<td>BST 60191</td>
<td>VARIABLE CONTENT SEMINAR IN BIOSTATISTICS</td>
<td>1-3</td>
<td>Standard Letter</td>
<td>Graduate standing.</td>
</tr>
<tr>
<td>BST 60192</td>
<td>PRACTICUM EXPERIENCE IN BIOSTATISTICS</td>
<td>1-6</td>
<td>Standard Letter</td>
<td>Graduate standing and special approval.</td>
</tr>
<tr>
<td>BST 60195</td>
<td>SPECIAL TOPICS IN BIOSTATISTICS</td>
<td>1-3</td>
<td>Standard Letter</td>
<td>Graduate standing.</td>
</tr>
<tr>
<td>BST 62020</td>
<td>DATA MANAGEMENT AND LOGIC USING SAS® SOFTWARE</td>
<td>3</td>
<td>Standard Letter</td>
<td>Graduate standing.</td>
</tr>
<tr>
<td>BST 63012</td>
<td>SURVIVAL ANALYSIS IN PUBLIC HEALTH</td>
<td>3</td>
<td>Standard Letter</td>
<td>Graduate standing.</td>
</tr>
<tr>
<td>BST 63013</td>
<td>EXPERIMENTAL DESIGNS IN PUBLIC HEALTH RESEARCH</td>
<td>3</td>
<td>Standard Letter</td>
<td>Graduate standing.</td>
</tr>
<tr>
<td>BST 63014</td>
<td>APPLIED REGRESSION ANALYSIS OF PUBLIC HEALTH DATA</td>
<td>3</td>
<td>Standard Letter</td>
<td>Graduate standing.</td>
</tr>
<tr>
<td>BST 63015</td>
<td>CATEGORICAL DATA ANALYSIS OF PUBLIC HEALTH DATA</td>
<td>3</td>
<td>Standard Letter</td>
<td>Graduate standing.</td>
</tr>
</tbody>
</table>

BST 52019 BIOSTATISTICS IN PUBLIC HEALTH

Provides students with an understanding of basic statistical methods in public health research, as well as the skills to perform and interpret basic statistical procedures. Students learn how to use statistical analysis software to analyze real data from public health-related studies. They then learn how to interpret the analysis and present the results to public health professionals and educated lay audiences. Includes lab component which enhances student awareness and informed usage of SAS for public health analysis. Students learn how to input, read, store, export, and modify data in SAS and be able to use common SAS procedures to analyze public health data and conduct independent SAS programming.

BST 60191 VARIABLE CONTENT SEMINAR IN BIOSTATISTICS

(Repeatable for credit) Seminar on current and important topics in biostatistics. Subject matter varies depending on the topic.

BST 60192 PRACTICUM EXPERIENCE IN BIOSTATISTICS

Observational and participation in public health activities of a public health agency, hospital or other approved organization. The student completes the field experience with joint supervision from the university and approved organization or agency.

BST 62020 DATA MANAGEMENT AND LOGIC USING SAS® SOFTWARE

(Slashed with BST 82020) This course introduces graduate students to SAS® software, reading external data into SAS software, use of SAS data step, basic SAS functions, logical data steps for data management, and different SAS procedures for creating summary reports, graphical displays, and conducting basic statistical analysis using the SAS software. SAS Lab sessions are designed to mimic real time challenges working with different kinds of data and learn how to meet such challenges. By the end of the course, students will achieve competency in proper and efficient use of SAS software.

BST 63012 SURVIVAL ANALYSIS IN PUBLIC HEALTH

Introduction in survival analysis for graduate students in public health. Covers survival functions, hazard rates, types of censoring and truncation. Methods of focus include life tables, Kaplan-Meier plots, log-rank tests, Cox regression models and parametric survival models. Inference for recurrent event and competing risks models are also covered.

BST 63013 EXPERIMENTAL DESIGNS IN PUBLIC HEALTH RESEARCH

Introduces students to experimental research methods, in public health settings. First introduces a number of quasi-experimental and experimental study designs, then identifies a number of statistical methods that can be used to draw correct causal inferences from the study.

BST 63014 APPLIED REGRESSION ANALYSIS OF PUBLIC HEALTH DATA

(Cross-listed with BST 83014) Focuses on developing student proficiency in building and evaluating various regression models for public health studies. Topics covered include exploratory and descriptive methods, simple and multiple linear regression models, predictor selection, binary and multinomial logistic regression models, survival analysis, repeated measures and generalized linear models.

BST 63015 CATEGORICAL DATA ANALYSIS OF PUBLIC HEALTH DATA

(Slashed with BST 83015) Provides an applied introduction to the most important methods for analyzing categorical data in public health. Topics covered include contingency tables, logistic regression, generalized linear models, modeling matched pairs and clustered responses.
BST 73011 MULTIVARIATE ANALYSIS IN PUBLIC HEALTH 3 Credit Hours
Multivariate statistical methods are designed to evaluate more than one variable at a time. An application-oriented introduction to essential multivariate statistical methods used in public health. Topics covered include matrix theory, data screening and preliminary analyses, multivariate normal distributions, multivariate versions of the general linear model (MANOVA, multivariate multiple regression, MANCOVA), discrimination and classification, canonical correlation analysis, and methods of analyzing covariance and correlation structures (principal components and factor analysis). Also introduces and explores methods of handling missing data.
Prerequisite: BST 52019 and Doctoral standing.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

BST 82020 DATA MANAGEMENT AND LOGIC USING SAS® SOFTWARE 3 Credit Hours
(Slashed with BST 62020) This course introduces graduate students to SAS® software, reading external data into SAS software, use of SAS data step, basic SAS functions, logical data steps for data management, and different SAS procedures for creating summary reports, graphical displays, and conducting basic statistical analysis using the SAS software. SAS Lab sessions are designed to mimic real time challenges working with different kinds of data and learn how to meet such challenges. By the end of the course, students will achieve competency in proper and efficient use of SAS software.
Prerequisite: Doctorate standing.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

BST 83012 SURVIVAL ANALYSIS IN PUBLIC HEALTH 3 Credit Hours
Covers survival functions, hazard rates, types of censoring and truncation. Methods of focus include life tables, Kaplan-Meier plots, log-rank tests, Cox regression models and parametric survival models. Inference for recurrent event and competing risks models are also covered.
Prerequisite: BST 52019; and BST 63014 or 83014 and Doctoral standing.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

BST 83013 EXPERIMENTAL DESIGNS IN PUBLIC HEALTH RESEARCH 3 Credit Hours
Designed to introduce students to experimental research methods, in public health settings. First introduces a number of quasi-experimental and experimental study designs, then identifies a number of statistical methods that can be used to draw correct causal inferences from the study. Students are expected to develop two research proposals, first using quasi-experimental then an experimental design and develop a statistical analysis plan for each study.
Prerequisite: BST 52019; and BST 63014 or 83014 and Doctoral standing.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

BST 83014 APPLIED REGRESSION ANALYSIS OF PUBLIC HEALTH DATA 3 Credit Hours
(Slashed with BST 63014) Focuses on developing student proficiency in building and evaluating various regression models for public health studies. Topics covered include exploratory and descriptive methods, simple and multiple linear regression models, predictor selection, binary and multinomial logistic regression models, survival analysis, repeated measures and generalized linear models.
Prerequisite: BST 52019 and Doctoral standing.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

BST 83015 CATEGORICAL DATA ANALYSIS OF PUBLIC HEALTH DATA 3 Credit Hours
(Cross-listed with BST 63015) Provides an applied introduction to the most important methods for analyzing categorical data in public health. Topics covered include contingency tables, logistic regression, generalized linear models, modeling matched pairs, mixed models for categorical data and clustered responses.
Prerequisite: BST 52019 and EPI 52017 and Doctoral standing.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter