CHEMICAL PHYSICS (CPHY)

CPHY 60199 THESIS I 2-6 Credit Hours
Thesis students must register for a total of 6 hours; 2-6 hours in a single semester or distributed over two semesters if desired.
Prerequisite: Graduate standing; and special approval.
Schedule Type: Masters Thesis
Contact Hours: 2-6 other
Grade Mode: Satisfactory/Unsatisfactory-IP

CPHY 60299 THESIS II 2 Credit Hours
Thesis students must continually register each semester until all degree requirements are met.
Prerequisite: CPHY 60199; and graduate standing.
Schedule Type: Masters Thesis
Contact Hours: 2 other
Grade Mode: Satisfactory/Unsatisfactory-IP

CPHY 60498 RESEARCH 1-15 Credit Hours
(Repeatable for credit) Research or individual investigation. Credits earned may be applied toward meeting degree requirements with department approval. Prerequisite: Graduate standing; and special approval
Schedule Type: Research
Contact Hours: 3 other
Grade Mode: Satisfactory/Unsatisfactory

CPHY 62241 SOFT MATTER 3 Credit Hours
(Slashed with CPHY 72241) Lectures on soft materials, including binary fluid mixtures, polymers, colloids, thermotropic and lyotropic liquid crystals. Structures, defects, and textures of phases with orientational and partial translational order. Dynamics of phase transitions.
Prerequisite: Graduate standing.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

CPHY 62242 CHARACTERIZATION OF SOFT MATTER 3 Credit Hours
(Slashed with CPHY 72242) Course provides students with the fundamentals of the most commonly used techniques for the study and understanding of soft matter at the macroscopic and microscopic level, especially at the nanometer scale. The advancement in basic soft matter research is generally driven by the experimental techniques available and the interdisciplinary knowledge among condensed matter physicists, biologists, synthetic and physical chemists, as well as chemical and polymer engineers.
Prerequisite: Graduate standing.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

CPHY 62245 FUNDAMENTALS OF LIQUID CRYSTAL SCIENCE 4 Credit Hours
(Slashed with CPHY 72245) Basic liquid crystals structures and their main physical properties, such as visco-elastic, electric, magnetic and optical properties, except the nature of their phase transitions. Also discussed are their interactions with surfaces and the structural defects that they can form.
Prerequisite: Graduate standing.
Schedule Type: Lecture
Contact Hours: 4 lecture
Grade Mode: Standard Letter

CPHY 62248 LIQUID CRYSTAL OPTICS AND PHOTONICS 4 Credit Hours
(Slashed with CPHY 72248) Optics of cholesterics, liquid crystalline photonic bandgap materials, nonlinear optics of liquid crystals; optomechanical effects in liquid crystal elastomers.
Prerequisite: Graduate standing.
Schedule Type: Lecture
Contact Hours: 4 lecture
Grade Mode: Standard Letter

CPHY 62249 LABVIEW FOR DATA ACQUISITION AND INSTRUMENT CONTROL 1 Credit Hour
(Slashed with CPHY 72249) Introduction to laboratory data acquisition and instrument control using LabView software.
Prerequisite: Graduate standing.
Schedule Type: Lecture
Contact Hours: 1 lecture
Grade Mode: Standard Letter

CPHY 62335 ADVANCED LIQUID CRYSTALLINE AND POLYMERIC MATERIALS 4 Credit Hours
(Slashed with CPHY 72335) Course introduce students to recent advances in liquid crystals and polymers with emphasis on structure-property relationships, physical and optical properties, and their applications. Liquid crystals and polymers are soft matters of two important disciplines of science and technology. They both have a similar history and are rich in physical and optical properties useful for fundamental and applied research.
Prerequisite: Graduate standing.
Schedule Type: Combined Lecture and Lab
Contact Hours: 3 lecture, 2 lab
Grade Mode: Standard Letter

CPHY 62450 LIQUID CRYSTAL OPTICS I: THEORY 2 Credit Hours
(Slashed with CPHY 72450) Provides an introduction to optical phenomena with an emphasis on liquid crystals, from geometrical optics to Maxwell’s equations. Basic principles are used to analyze and solve optics problems arising in liquid crystal engineering.
Prerequisite: Graduate standing.
Schedule Type: Lecture
Contact Hours: 2 lecture
Grade Mode: Standard Letter

CPHY 62452 LIQUID CRYSTAL OPTICS II: OPTICAL SYSTEMS 2 Credit Hours
(Slashed with CPHY 72452) Focuses on the study of practical optical systems with an emphasis on liquid crystals. Starting with the understanding of basic optical components such as lenses, mirrors, filters and polarizers, students study the principles of optical system design. Practical concepts and techniques for the implementation of optical instruments and displays are mastered through lectures and lab work.
Prerequisite: CPHY 62450; and graduate standing.
Schedule Type: Combined Lecture and Lab
Contact Hours: 1 lecture, 2 lab
Grade Mode: Standard Letter
CPHY 62454 LIQUID CRYSTAL OPTICS III: APPLICATIONS 1 Credit Hour
(Slashed with CPHY 72454) Focuses on the study of practical optical systems for liquid crystal optical devices. Fundamental optical characteristics of liquid crystal displays and the standard methods of characterization are studied in the lab.
Prerequisite: CPHY 62450; and graduate standing.
Corequisite: CPHY 62452.
Schedule Type: Laboratory
Contact Hours: 2 lecture
Grade Mode: Standard Letter

CPHY 62460 LIQUID CRYSTAL MATERIALS SCIENCE 2 Credit Hours
(Slashed with CPHY 72460) Familiarizes students with the basic, underlying chemical concepts in liquid crystal science. These concepts include molecular structures and properties of liquid crystal molecules, miscibility rules and micro-segregation of chemically incompatible molecular segments, physical and electronic properties of aromatic compounds including heterocycles and fluorinated aromatics, properties of aliphatic and perfluorinated hydrocarbons, unsaturation, and chirality. Other aspects covered in later sections of this course relate to auxiliary and novel materials used in liquid crystal devices such as polymers, carbon nanomaterials, metal and semiconductor nanoparticles and photo-responsive organic materials.
Prerequisite: Graduate standing.
Schedule Type: Lecture
Contact Hours: 2 lecture
Grade Mode: Standard Letter

CPHY 62462 LIQUID CRYSTAL SCIENCE: PHYSICAL PROPERTIES 3 Credit Hours
(Slashed with CPHY 72462) Basics of liquid crystal defects and their behavior in magnetic and electric fields.
Prerequisite: Graduate standing.
Pre/corequisite: CPHY 62460.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

CPHY 62643 LIQUID CRYSTAL APPLICATIONS 4 Credit Hours
(Slashed with CPHY 72643) Apply knowledge of liquid crystals and optics to the design of liquid crystal electro-optical devices. Emphasis is on modeling of devices and the use of that modeling to optimize device characteristics. Several particular device designs are considered to familiarize the student with the state of the art in liquid crystal displays and other electro-optical applications of liquid crystals and to prepare them to advance the art in future designs.
Prerequisite: Graduate standing.
Schedule Type: Lecture
Contact Hours: 4 lecture
Grade Mode: Standard Letter

CPHY 62647 STRUCTURED FLUIDS 3 Credit Hours
(Slashed with CPHY 72647) The basics of fluids having internal structures, such as long range orientational order and or one and two dimensional positional order. Materials include thermotropic smectic, lamellar lyotropic and columnar liquid crystals, soap films, fluid foams, fluid fibers and Langmuir monolayers.
Prerequisite: Graduate standing.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

CPHY 62650 COMPUTATIONAL MATERIALS SCIENCE 3 Credit Hours
(Slashed with CPHY 72650) Materials modeling at the classical (i.e. non-quantum) level. Monte Carlo methods; molecular dynamics simulation; mesoscale models; numerical methods; case studies.
Prerequisite: Graduate standing.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

CPHY 62651 NANOBIOTECHNOLOGY 3 Credit Hours
(Slashed with CPHY 72651) Course presents the concepts, principles and the state-of-the-arts of nanotechnologies and their applications in biological and biomedical science and engineering. Focus is on the fundamental physical principles and engineering technologies of device miniaturization and system integration for bioapplications.
Prerequisite: Graduate standing.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

CPHY 63000 PHYSICS OF SOFT MATTER 3 Credit Hours
(Slashed with CPHY 73000) Course is designed to teach the basics of physics of soft matter, including polymers, liquid crystals, colloids, reduced dimensionality fluids and active matter. Provides students a coherent and deep understanding of the most important concepts and scientific results of soft matter such as nano- and microscopic structures, mechanical, electrical and optical properties.
Prerequisite: Graduate standing.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter
CPHY 63010 LYTOTROPIC LIQUID CRYSTALS 3 Credit Hours
(Slashed with CPHY 73010) Course covers the fundamentals and the
chemical aspects of different types of lyotropic liquid crystals (organic,
inorganic, composites) leading to a discussion of phase diagrams and a
comprehensive discussion of the characterization techniques of
lyotropic liquid crystals. Focuses on some key aspects related to the use
of lyotropic liquid crystals in pharmacological and medical applications
such as drug delivery and the use of lyotropic liquid crystals as templates
or ‘reactors’ for nanoscale synthesis and mesoscale manufacturing.
Prerequisite: Graduate standing.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

CPHY 63015 CHEMISTRY OF SOFT MATTER 3 Credit Hours
(Slashed with CPHY 73015) Course familiarizes students with the basic
underlying chemical concepts in soft matter science, focusing on
the most important chemical building blocks in soft matter, IUPAC
rules for naming them, miscibility rules and micro-segregation of
chemically incompatible molecular segments, physical and electronic
properties of aromatic compounds, including heterocyclic and fluorinated
aromatics, properties of aliphatic and perfluorinated hydrocarbons,
unsaturation, structure-property relationships and all levels of chirality
(molecular to supramolecular). Other topics focus on specific types of
materials explored in soft matter such as polymers, liquid crystals,
carbon nanomaterials, metal and semiconductor nanoparticles and light-
responsive organic materials, gels, foams and colloids.
Prerequisite: Graduate standing.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

CPHY 63020 APPLICATIONS OF SOFT MATTER 3 Credit Hours
(Slashed with CPHY 73020) Course covers the applications of soft matter
that include electro-optical, sensor and biological applications. Recent
developments related to emerging applications are covered.
Prerequisite: CPHY 63000; and graduate standing.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

CPHY 64491 SEMINAR: LIQUID CRYSTALS 1 Credit Hour
(Repeatable for credit)(Slashed with CPHY 74491) Discussion of current
literature or original research in liquid crystals. Participation by students,
faculty and guests.
Prerequisite: Graduate standing; and special approval.
Schedule Type: Seminar
Contact Hours: 1 other
Grade Mode: Satisfactory/Unsatisfactory

CPHY 64495 SPECIAL TOPICS IN CHEMICAL PHYSICS 1-3 Credit
Hours
(Repeatable for credit)(Slashed with CPHY 74495) Topic varies per course
offering.
Prerequisite: Graduate standing; and special approval.
Schedule Type: Lecture
Contact Hours: 1-3 lecture
Grade Mode: Standard Letter

CPHY 65002 LIQUID CRYSTAL DEVICE ENGINEERING I 2 Credit
Hours
(Slashed with CPHY 75002) Introduction to liquid crystal device
technology, including a hands-on investigation of the component parts
of liquid crystal device and how the devices function. Covers the basics
of liquid crystals as related to liquid crystal technology; examples of
current liquid crystal technology, with an emphasis on the fundamental
science behind the technology and hands-on characterization of it; and
the consideration of next generation liquid crystal device technology,
such as three-dimension displays and optical devices.
Prerequisite: Graduate standing.
Schedule Type: Lecture
Contact Hours: 2 lecture
Grade Mode: Standard Letter

CPHY 65004 LIQUID CRYSTAL DEVICE ENGINEERING II 3 Credit
Hours
(Slashed with CPHY 75004) Provides an introduction to liquid crystal
device design, including a hands-on look at the designs of devices, the
basic modeling tools used in one- and two-dimension devices, and the
consideration of the modeling and effect of defects in liquid crystal
devices.
Prerequisite: CPHY 65002; and graduate standing.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

CPHY 65006 LIQUID CRYSTAL DEVICE PROTOTYPING 2 Credit
Hours
(Slashed with CPHY 75006) Liquid crystal device prototyping;
introduction to liquid crystal device manufacturing methods.
Prerequisite: Graduate standing.
Schedule Type: Combined Lecture and Lab
Contact Hours: 1 lecture, 2 lab
Grade Mode: Standard Letter

CPHY 65008 LIQUID CRYSTAL DEVICE CONSTRUCTION 1 Credit
Hour
(Slashed with CPHY 75008) Students acquire the knowledge and
experience in basic techniques and procedures for the construction
of liquid crystal cells. Based on the cleanroom techniques, ITO glass
handling, film deposition, surface alignment treatment and cell assembly
experienced, students are prepared for successive lab courses and the
capstone project.
Prerequisite: Graduate standing.
Schedule Type: Laboratory
Contact Hours: 2 lab
Grade Mode: Standard Letter

CPHY 65010 LIQUID CRYSTAL CHARACTERIZATION 2 Credit Hours
(Slashed with CPHY 75010) Focuses on experimental techniques that are
used to characterize liquid crystals and liquid crystal devices. Students
learn principles and uses of characterization and test equipment to
measure physical properties of liquid crystal materials and test the
performance of liquid crystal cells.
Prerequisite: Graduate standing.
Schedule Type: Combined Lecture and Lab
Contact Hours: 1 lecture, 2 lab
Grade Mode: Standard Letter
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPHY 65012</td>
<td>LIQUID CRYSTAL DEVICE TESTING</td>
<td>2</td>
</tr>
<tr>
<td>CPHY 65020</td>
<td>LIQUID CRYSTAL ANALOG ELECTRONICS</td>
<td>2</td>
</tr>
<tr>
<td>CPHY 65022</td>
<td>LIQUID CRYSTAL DIGITAL ELECTRONICS</td>
<td>2</td>
</tr>
<tr>
<td>CPHY 65098</td>
<td>MASTER'S PROJECT: ENGINEERING APPLICATIONS OF LIQUID CRYSTALS</td>
<td>6</td>
</tr>
<tr>
<td>CPHY 72241</td>
<td>SOFT MATTER</td>
<td>3</td>
</tr>
<tr>
<td>CPHY 72242</td>
<td>CHARACTERIZATION OF SOFT MATTER</td>
<td>3</td>
</tr>
<tr>
<td>CPHY 72245</td>
<td>FUNDAMENTALS OF LIQUID CRYSTAL SCIENCE</td>
<td>4</td>
</tr>
<tr>
<td>CPHY 72248</td>
<td>LIQUID CRYSTAL OPTICS AND PHOTONICS</td>
<td>4</td>
</tr>
<tr>
<td>CPHY 72249</td>
<td>LABVIEW FOR DATA ACQUISITION AND INSTRUMENT CONTROL</td>
<td>1</td>
</tr>
</tbody>
</table>

(Slashed with CPHY 75012) Course offers an opportunity for students to carry out a project that aims to develop a liquid crystal device for a particular application, experiencing the complete development process from the field analysis, idea generation, concept design, feasibility study, implementation and testing.

Prerequisite: CPHY 62450; and CPHY 62452; and CPHY 62454; and CPHY 65008; and CPHY 65022; and graduate standing.

Schedule Type: Master's Project

Contact Hours: 6 other
Grade Mode: Standard Letter-IP

(Slashed with CPHY 75020) Familiarizes students with both theory and laboratory experiments on analog electronics for liquid crystal devices. Key topics are circuit analysis, operational amplifiers and data acquisition, analysis and equipment control using LabView.

Prerequisite: Graduate standing.

Schedule Type: Combined Lecture and Lab

Contact Hours: 1 lecture, 2 lab
Grade Mode: Standard Letter

(Slashed with CPHY 75022) Familiarizes students with both theory and laboratory experiments on digital electronics for liquid crystal displays. Key topics are AD, DA and logic circuits, microcontrollers and digital communications.

Prerequisite: CPHY 65020; and graduate standing.

Schedule Type: Combined Lecture and Lab

Contact Hours: 1 lecture, 2 lab
Grade Mode: Standard Letter

(Slashed with CPHY 75032) Course aims to help graduate students in STEM fields improve their skills in scientific writing and presentations. Activities include a mock panel review of scientific proposals. Students produce a final paper that could serve as the introductory chapter of a thesis or dissertation.

Prerequisite: Graduate standing.

Schedule Type: Lecture

Contact Hours: 1 lecture
Grade Mode: Standard Letter

(Slashed with CPHY 62245) Basic liquid crystals structures and their main physical properties, such as visco-elastic, electric, magnetic and optical properties, except the nature of their phase transitions. Also discussed are their interactions with surfaces and the structural defects that they can form.

Prerequisite: Doctoral standing.

Schedule Type: Lecture

Contact Hours: 4 lecture
Grade Mode: Standard Letter

(Slashed with CPHY 62249) Optics of cholesterics, liquid crystalline photonic bandgap materials, nonlinear optics of liquid crystals; optomechanical effects in liquid crystal elastomers.

Prerequisite: Doctoral standing.

Schedule Type: Lecture

Contact Hours: 4 lecture
Grade Mode: Standard Letter

(Slashed with CPHY 62249) Introduction to laboratory data acquisition and instrument control using Labview software.

Prerequisite: Doctoral standing.

Schedule Type: Lecture

Contact Hours: 1 lecture
Grade Mode: Satisfactory/Unsatisfactory
CPHY 72335 ADVANCED LIQUID CRYSTALLINE AND POLYMERIC MATERIALS 4 Credit Hours
(Slashed with CPHY 62335) Course introduce students to recent advances in liquid crystals and polymers with emphasis on structure-property relationships, physical and optical properties, and their applications. Liquid crystals and polymers are soft matters of two important disciplines of science and technology. They both have a similar history and are rich in physical and optical properties useful for fundamental and applied research.

Prerequisite: Doctoral standing.
Schedule Type: Combined Lecture and Lab
Contact Hours: 3 lecture, 2 lab
Grade Mode: Standard Letter

CPHY 72450 LIQUID CRYSTAL OPTICS I: THEORY 2 Credit Hours
(Slashed with CPHY 62450) Provides an introduction to optical phenomena with an emphasis on liquid crystals, from geometrical optics to Maxwell’s equations. Basic principles are used to analyze and solve optics problems arising in liquid crystal engineering.

Prerequisite: Doctoral standing.
Schedule Type: Lecture
Contact Hours: 2 lecture
Grade Mode: Standard Letter

CPHY 72452 LIQUID CRYSTAL OPTICS II: OPTICAL SYSTEMS 2 Credit Hours
(Slashed with CPHY 62452) Focuses on the study of practical optical systems with an emphasis on liquid crystals. Starting with the understanding of basic optical components such as lenses, mirrors, filters and polarizers, students study the principles of optical system design. Practical concepts and techniques for the implementation of optical instruments and displays are mastered through lectures and lab work.

Prerequisite: CPHY 72450; and doctoral standing.
Schedule Type: Combined Lecture and Lab
Contact Hours: 1 lecture, 2 lab
Grade Mode: Standard Letter

CPHY 72454 LIQUID CRYSTAL OPTICS III: APPLICATIONS 1 Credit Hour
(Slashed with CPHY 62454) Focuses on the study of practical optical systems for liquid crystal optical devices. Fundamental optical characteristics of liquid crystal displays and the standard methods of characterization are studied in the lab.

Prerequisite: CPHY 72450; and doctoral standing.
Corequisite: CPHY 72452.
Schedule Type: Laboratory
Contact Hours: 2 lab
Grade Mode: Standard Letter

CPHY 72460 LIQUID CRYSTAL MATERIALS SCIENCE 2 Credit Hours
(Slashed with CPHY 62460) Familiarizes students with the basic, underlying chemical concepts in liquid crystal science. These concepts include molecular structures and properties of liquid crystal molecules, miscibility rules and micro-segregation of chemically incompatible molecular segments, physical and electronic properties of aromatic compounds including heterocycles and fluorinated aromatics, properties of aliphatic and perfluorinated hydrocarbons, unsaturation, and chirality. Other aspects covered in later sections of this course relate to auxiliary and novel materials used in liquid crystal devices such as polymers, carbon nanomaterials, metal and semiconductor nanoparticles and photo-responsive organic materials.

Prerequisite: Doctoral standing.
Schedule Type: Lecture
Contact Hours: 2 lecture
Grade Mode: Standard Letter

CPHY 72462 LIQUID CRYSTAL SCIENCE: PHYSICAL PROPERTIES 3 Credit Hours
(Slashed with CPHY 62462) Basics of liquid crystal defects and their behavior in magnetic and electric fields.

Prerequisite: Doctoral standing.
Pre/corequisite: CPHY 72460.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

CPHY 72460 LIQUID CRYSTAL, POLYMER AND COLLOID COMPOSITES 4 Credit Hours
(Slashed with CPHY 62460) Interdisciplinary science of systems consisting of liquid crystal, polymer and colloid. Statistical physics of composite systems, mixing free energy, phase separation principle, phase diagrams and phase separation dynamics. States, structures and free energies of liquid crystal, polymer and colloidal systems. Polymer dispersed liquid crystals (PDLC), polymer stabilized liquid crystals (PSLC) and their applications. Laboratory experiments on composite systems and fabrication of PDLC and PSLC light shutters.

Prerequisite: Doctoral standing.
Schedule Type: Combined Lecture and Lab
Contact Hours: 3 lecture, 1 lab
Grade Mode: Standard Letter

CPHY 72443 LIQUID CRYSTAL APPLICATIONS 4 Credit Hours
(Slashed with CPHY 62443) Apply knowledge of liquid crystals and optics to the design of liquid crystal electro-optical devices. Emphasis is on modeling of devices and the use of that modeling to optimize device characteristics. Several particular device designs are considered to familiarize the student with the state of the art in liquid crystal displays and other electro-optical applications of liquid crystals and to prepare them to advance the art in future designs.

Prerequisite: Doctoral standing.
Schedule Type: Lecture
Contact Hours: 4 lecture
Grade Mode: Standard Letter
CPHY 72647 STRUCTURED FLUIDS 3 Credit Hours
(Slashed with CPHY 62647) The basics of fluids having internal structures, such as long range orientational order and or one and two dimensional positional order. Such materials include thermotropic smectic, lamellar lyotropic and columnar liquid crystals, soap films, fluid foams, fluid fibers and Langmuir monolayers.
Prerequisite: Doctoral standing.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

CPHY 72650 COMPUTATIONAL MATERIALS SCIENCE 3 Credit Hours
(Cross-listed with CPHY 62650) Materials modeling at the classical (i.e. non-quantum) level. Monte Carlo methods; molecular dynamics simulation; mesoscale models; numerical methods; case studies.
Prerequisite: Doctoral standing.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

CPHY 72651 NANOBIO TECHNOLOGY 3 Credit Hours
(Slashed with CPHY 62651) Course presents the concepts, principles and the state-of-the-arts of nanotechnologies and their applications in biological and biomedical science and engineering. Focus is on the fundamental physical principles and engineering technologies of device miniaturization and system integration for bioapplications.
Prerequisite: Doctoral standing.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

CPHY 72652 PHYSICS OF SOFT MATTER 3 Credit Hours
(Slashed with CPHY 73000) Course is designed to teach the basics of physics of soft matter, including polymers, liquid crystals, colloids, reduced dimensionality fluids and active matter. Provides students a coherent and deep understanding of the most important concepts and scientific results of soft matter, such as nano-, and microscopic structures, mechanical, electrical and optical properties.
Prerequisite: Doctoral standing.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

CPHY 73000 PHYSICS OF SOFT MATTER 3 Credit Hours
(Slashed with CPHY 73000) Course is designed to teach the basics of physics of soft matter, including polymers, liquid crystals, colloids, reduced dimensionality fluids and active matter. Provides students a coherent and deep understanding of the most important concepts and scientific results of soft matter, such as nano-, and microscopic structures, mechanical, electrical and optical properties.
Prerequisite: Doctoral standing.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

CPHY 73015 CHEMISTRY OF SOFT MATTER 3 Credit Hours
(Slashed with CPHY 63015) Course familiarizes students with the basic underlying chemical concepts in soft matter science, focusing on the most important chemical building blocks in soft matter, IUPAC rules for naming them, miscibility rules and micro-segregation of chemically incompatible molecular segments, physical and electronic properties of aromatic compounds, including heterocyclic and fluorinated aromatics, properties of aliphatic and perfluorinated hydrocarbons, unsaturation, structure-property relationships and all levels of chirality (molecular to supramolecular). Other topics focus on specific types of materials explored in soft matter such as polymers, liquid crystals, carbon nanomaterials, metal and semiconductor nanoparticles and light-responsive organic materials, gels, foams and colloids.
Prerequisite: Doctoral standing.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

CPHY 73020 APPLICATIONS OF SOFT MATTER 3 Credit Hours
(Slashed with CPHY 63020) Course covers the applications of soft matter that include electro-optical, sensor and biological applications. Recent developments related to emerging applications are covered.
Prerequisite: CPHY 7300; and doctoral standing.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

CPHY 74491 SEMINAR: LIQUID CRYSTALS 1 Credit Hour
(Repeatable for credit)(Slashed with CPHY 64491) Discussion of current literature or original research in liquid crystals. Participation by students, faculty and guests.
Prerequisite: Doctoral standing; and special approval.
Schedule Type: Seminar
Contact Hours: 1 other
Grade Mode: Satisfactory/Unsatisfactory

CPHY 74495 SPECIAL TOPICS IN CHEMICAL PHYSICS 1-3 Credit Hours
(Repeatable for credit)(Slashed with CPHY 64495) Topic varies per course offering.
Prerequisite: Doctoral standing; and special approval.
Schedule Type: Lecture
Contact Hours: 1-3 lecture
Grade Mode: Standard Letter

CPHY 75002 LIQUID CRYSTAL DEVICE ENGINEERING I 2 Credit Hours
(Slashed with CPHY 65002) Introduction to liquid crystal device technology, including a hands-on investigation of the component parts of liquid crystal device and how the devices function. Covers the basics of liquid crystals as related to liquid crystal technology; examples of current liquid crystal technology, with an emphasis on the fundamental science behind the technology and hands-on characterization of it; and the consideration of next generation liquid crystal device technology, such as three-dimension displays and optical devices.
Prerequisite: Doctoral standing.
Schedule Type: Lecture
Contact Hours: 2 lecture
Grade Mode: Standard Letter
CPHY 75004 LIQUID CRYSTAL DEVICE ENGINEERING II 3 Credit Hours
(Slashed with CPHY 65004) Provides an introduction to liquid crystal device design, including a hands-on look at the designs of devices, the basic modeling tools used in one- and two-dimension devices, and the consideration of the modeling and effect of defects in liquid crystal devices.
Prerequisite: CPHY 75002; and doctoral standing.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

CPHY 75006 LIQUID CRYSTAL DEVICE PROTOTYPING 2 Credit Hours
(Slashed with CPHY 65006) Liquid crystal device prototyping; an introduction to liquid crystal device manufacturing methods.
Prerequisite: Doctoral standing.
Schedule Type: Combined Lecture and Lab
Contact Hours: 1 lecture, 2 lab
Grade Mode: Standard Letter

CPHY 75008 LIQUID CRYSTAL DEVICE CONSTRUCTION 1 Credit Hour
(Slashed with CPHY 65008) Students acquire the knowledge and experience in basic techniques and procedures for the construction of liquid crystal cells. Based on the cleanroom techniques, ITO glass handling, film deposition, surface alignment treatment and cell assembly experienced, students are prepared for successive lab courses and the capstone project.
Prerequisite: Doctoral standing.
Schedule Type: Laboratory
Contact Hours: 2 lab
Grade Mode: Standard Letter

CPHY 75010 LIQUID CRYSTAL CHARACTERIZATION 2 Credit Hours
(Slashed with CPHY 65010) Focuses on experimental techniques that are used to characterize liquid crystals and liquid crystal devices. Students learn principles and uses of characterization and test equipment to measure physical properties of liquid crystal materials and test the performance of liquid crystal cells.
Prerequisite: Doctoral standing.
Schedule Type: Combined Lecture and Lab
Contact Hours: 1 lecture, 2 lab
Grade Mode: Standard Letter

CPHY 75012 LIQUID CRYSTAL DEVICE TESTING 2 Credit Hours
(Slashed with CPHY 65012) Focuses on experimental techniques that are used to test liquid crystal devices. Students use advanced equipment to measure the response and evaluate the performance of liquid crystal devices.
Prerequisite: Doctoral standing.
Schedule Type: Combined Lecture and Lab
Contact Hours: 1 lecture, 2 lab
Grade Mode: Standard Letter

CPHY 75020 LIQUID CRYSTAL ANALOG ELECTRONICS 2 Credit Hours
(Slashed with CPHY 65020) Familiarizes students with both theory and laboratory experiments on analog electronics for liquid crystal devices. Key topics are circuit analysis, operational amplifiers and data acquisition, analysis and equipment control using LabView.
Prerequisite: Doctoral standing.
Schedule Type: Combined Lecture and Lab
Contact Hours: 1 lecture, 2 lab
Grade Mode: Standard Letter

CPHY 75022 LIQUID CRYSTAL DIGITAL ELECTRONICS 2 Credit Hours
(Slashed with CPHY 65022) Familiarizes students with both the theory and laboratory experiments on digital electronics for liquid crystal displays. Key topics are AD, DA and logic circuits, microcontrollers and digital communications.
Prerequisite: CPHY 75020; and doctoral standing.
Schedule Type: Combined Lecture and Lab
Contact Hours: 1 lecture, 2 lab
Grade Mode: Standard Letter

CPHY 75032 SCIENTIFIC COMMUNICATION 1 Credit Hour
(Slashed with CPHY 65032) Course aims to help graduate students in STEM fields improve their skills in scientific writing and presentations. Activities include a mock panel review of scientific proposals. Students produce a final paper that could serve as the introductory chapter of a thesis or dissertation.
Prerequisite: Doctoral standing.
Schedule Type: Lecture
Contact Hours: 1 lecture
Grade Mode: Standard Letter

CPHY 80199 DISSERTATION I 15 Credit Hours
(Repeatable for credit) Doctoral dissertation for which registration in at least two semesters is required, first of which will be semester in which dissertation work is begun, and continuing until the completion of 30 hours.
Prerequisite: Doctoral standing; and special approval.
Schedule Type: Dissertation
Contact Hours: 15 other
Grade Mode: Satisfactory/Unsatisfactory-IP

CPHY 80299 DISSERTATION II 15 Credit Hours
(Repeatable for credit) Continuing registration required of doctoral students who have completed the initial 30 hours of dissertation and continuing until all degree requirements are met.
Prerequisite: CPHY 80199 and doctoral standing.
Schedule Type: Dissertation
Contact Hours: 15 other
Grade Mode: Satisfactory/Unsatisfactory-IP

CPHY 80498 RESEARCH 1-15 Credit Hours
(Repeatable for credit) Research or individual investigation for doctoral student who has not yet passed candidacy exam. Credit earned may be applied toward degree.
Prerequisite: Doctoral standing.
Schedule Type: Research
Contact Hours: 1-15 other
Grade Mode: Satisfactory/Unsatisfactory-IP