Physics (PHY)

PHY 11030 SEVEN IDEAS THAT SHOOK THE UNIVERSE (KBS) 3 Credit Hours
Description of major revolutionary physical concepts and their implications for understanding the physical universe. Not counted toward requirements for physics major.
Prerequisite: None.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter
Attributes: Kent Core Basic Sciences, Transfer Module Natural Sciences

PHY 12000 INTRODUCTORY PHYSICS SEMINAR (ELR) 1 Credit Hour
To provide a nurturing course for new physics majors, ideally to be taken in their first semester as majors. The course includes a journal club component, informational talks by industrial physicists and training in a select group of essential skills and tools for future work in the physics program.
Prerequisite: None.
Schedule Type: Seminar
Contact Hours: 1 other
Grade Mode: Standard Letter
Attributes: Experiential Learning Requirement

PHY 12111 PHYSICS FOR HEALTH TECHNOLOGIES 3 Credit Hours
Basic physics applied to health technologies: measurement techniques, force and motion of solids and fluids, energy, heat wave phenomena, electricity. Students taking this course should be in a health technologies major.
Prerequisite: none.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

PHY 12201 TECHNICAL PHYSICS I (KBS) (KLAB) 3 Credit Hours
Introduction to principles of physics: mechanics.
Prerequisite: MATH 11010; and pre- or corequisite: MATH 11022 or MATH 12001.
Schedule Type: Combined Lecture and Lab
Contact Hours: 2 lecture, 2 lab
Grade Mode: Standard Letter
Attributes: Kent Core Basic Sciences, Kent Core Basic Sciences Lab

PHY 12202 TECHNICAL PHYSICS II (KBS) (KLAB) 4 Credit Hours
Introduction to principles of physics, including fluids, thermodynamics, electricity and magnetism.
Prerequisite: PHY 12201.
Schedule Type: Combined Lecture and Lab
Contact Hours: 3 lecture, 2 lab
Grade Mode: Standard Letter
Attributes: Kent Core Basic Sciences, Kent Core Basic Sciences Lab

PHY 13001 GENERAL COLLEGE PHYSICS I (KBS) 2 Credit Hours
Principles of classical physics, primarily mechanics. Three-hour lecture and one-hour recitation weekly. This is a flexibly scheduled course that meets concurrently with PHY 13001 for the first half of the regular term.
Prerequisite: MATH 11022 or MATH 12001 with a minimum C grade; or pre/corequisite MATH 12002 or MATH 12012 or MATH 12021.
Corequisite: PHY 13021.
Schedule Type: Lecture, Recitation
Contact Hours: 2 lecture
Grade Mode: Standard Letter
Attributes: Kent Core Basic Sciences, Transfer Module Natural Sciences

PHY 13002 GENERAL COLLEGE PHYSICS II (KBS) 4 Credit Hours
Principles of electricity and magnetism, optics and modern physics. Three hours lecture and one hour recitation weekly.
Prerequisite: PHY 13001 or PHY 23101.
Corequisite: PHY 13022.
Schedule Type: Lecture, Recitation
Contact Hours: 3 lecture, 1 other
Grade Mode: Standard Letter
Attributes: Kent Core Basic Sciences, TAG Science, Transfer Module Natural Sciences

PHY 13011 COLLEGE PHYSICS I (KBS) 2 Credit Hours
Principles of classical physics, primarily mechanics. Three-hour lecture and one-hour recitation weekly. This is a flexibly scheduled course that meets concurrently with PHY 13002 for the first half of a regular term.
Prerequisite: PHY 13001 or PHY 13011 or PHY 23101.
Schedule Type: Lecture, Recitation
Contact Hours: 2 lecture
Grade Mode: Standard Letter
Attributes: Kent Core Basic Sciences, Transfer Module Natural Sciences

PHY 13012 COLLEGE PHYSICS II (KBS) 2 Credit Hours
Principles of classical physics, primarily electricity and magnetism. Three-hour lecture and one-hour recitation weekly. This is a flexibly scheduled course that meets concurrently with PHY 13002 for the first half of a regular term.
Prerequisite: PHY 13001 or PHY 13011 or PHY 23101.
Schedule Type: Lecture, Recitation
Contact Hours: 2 lecture
Grade Mode: Standard Letter
Attributes: Kent Core Basic Sciences, Transfer Module Natural Sciences

PHY 13021 GENERAL COLLEGE PHYSICS LABORATORY I (KBS) (KLAB) 1 Credit Hour
Introductory lab to accompany PHY 13001 or PHY 13011.
Corequisite: PHY 13001 or PHY 13011.
Schedule Type: Laboratory
Contact Hours: 2 lab
Grade Mode: Standard Letter
Attributes: Kent Core Basic Sciences, Kent Core Basic Sciences Lab, TAG Science, Transfer Module Natural Sciences

PHY 13022 GENERAL COLLEGE PHYSICS LABORATORY II (KBS) (KLAB) 1 Credit Hour
Introductory lab to accompany PHY 13002 or PHY 13012.
Corequisite: PHY 13002 or PHY 13012.
Schedule Type: Laboratory
Contact Hours: 2 lab
Grade Mode: Standard Letter
Attributes: Kent Core Basic Sciences, Kent Core Basic Sciences Lab, TAG Science, Transfer Module Natural Sciences

PHY 20095 SPECIAL TOPICS 1-3 Credit Hours
(Repeatable for credit) Topic announced when scheduled.
Prerequisite: None.
Schedule Type: Lecture
Contact Hours: 1-3 lecture
Grade Mode: Standard Letter
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Description</th>
<th>Prerequisite(s)</th>
<th>Schedule Type</th>
<th>Contact Hours</th>
<th>Grade Mode</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 20096</td>
<td>INDIVIDUAL INVESTIGATION IN PHYSICS</td>
<td>1-6</td>
<td>Individual projects in physics. (Repeatable for credit)</td>
<td>Special approval.</td>
<td>Individual Investigation</td>
<td>1-6 other</td>
<td>Standard Letter-IP</td>
<td>Special approval.</td>
</tr>
<tr>
<td>PHY 21040</td>
<td>PHYSICS IN ENTERTAINMENT AND THE ARTS (KBS)</td>
<td>3</td>
<td>Descriptive introduction to physics underlying selected forms of art and entertainment. Examples are drawn from music, visual arts and communications media. Not counted toward requirements for physics major.</td>
<td>None.</td>
<td>Laboratory, Lecture</td>
<td>3 lab</td>
<td>Standard Letter-IP</td>
<td>Kent Core Basic Sciences, Kent Core Basic Sciences Lab, TAG Science</td>
</tr>
<tr>
<td>PHY 21430</td>
<td>FRONTIERS IN ASTRONOMY (KBS)</td>
<td>3</td>
<td>Modern description of astrophysical observations, the results of these observations and the physical principles based on them. Not counted toward requirements for physics major.</td>
<td>None.</td>
<td>Laboratory, Lecture</td>
<td>3 lab</td>
<td>Standard Letter-IP</td>
<td>Kent Core Basic Sciences, Transfer Module Natural Sciences</td>
</tr>
<tr>
<td>PHY 22564</td>
<td>INTRODUCTION TO MATERIALS PHYSICS</td>
<td>3</td>
<td>Survey of mechanical and electronic properties of materials with application in science and technology. Metals, semiconductors, ceramics, polymers and liquid crystals, and other special materials will be addressed.</td>
<td>PHY 23102</td>
<td>Lecture</td>
<td>3 lecture</td>
<td>Standard Letter-IP</td>
<td>Kent Core Basic Sciences, Kent Core Basic Sciences Lab, TAG Science</td>
</tr>
<tr>
<td>PHY 23101</td>
<td>GENERAL UNIVERSITY PHYSICS I (KBS) (KLAB)</td>
<td>5</td>
<td>Principles of mechanics, heat and sound at calculus level.</td>
<td>MATH 12002.</td>
<td>Laboratory, Lecture</td>
<td>4 lecture, 3 lab</td>
<td>Standard Letter-IP</td>
<td>Kent Core Basic Sciences, Kent Core Basic Sciences Lab, TAG Science</td>
</tr>
<tr>
<td>PHY 23102</td>
<td>GENERAL UNIVERSITY PHYSICS II (KBS) (KLAB)</td>
<td>5</td>
<td>Principles of electricity, magnetism, light and modern physics at calculus level.</td>
<td>PHY 13001 or PHY 23101.</td>
<td>Laboratory, Lecture</td>
<td>4 lecture, 3 lab</td>
<td>Standard Letter-IP</td>
<td>Kent Core Basic Sciences, Kent Core Basic Sciences Lab, TAG Science</td>
</tr>
<tr>
<td>PHY 23101</td>
<td>GENERAL UNIVERSITY PHYSICS I (KBS) (KLAB)</td>
<td>5</td>
<td>Principles of mechanics, heat and sound at calculus level.</td>
<td>MATH 12002.</td>
<td>Laboratory, Lecture</td>
<td>4 lecture, 3 lab</td>
<td>Standard Letter-IP</td>
<td>Kent Core Basic Sciences, Kent Core Basic Sciences Lab, TAG Science</td>
</tr>
<tr>
<td>PHY 23102</td>
<td>GENERAL UNIVERSITY PHYSICS II (KBS) (KLAB)</td>
<td>5</td>
<td>Principles of electricity, magnetism, light and modern physics at calculus level.</td>
<td>PHY 13001 or PHY 23101.</td>
<td>Laboratory, Lecture</td>
<td>4 lecture, 3 lab</td>
<td>Standard Letter-IP</td>
<td>Kent Core Basic Sciences, Kent Core Basic Sciences Lab, TAG Science</td>
</tr>
<tr>
<td>PHY 30020</td>
<td>INTERMEDIATE PHYSICS LABORATORY (WIC) (KLAB)</td>
<td>2</td>
<td>Laboratory component of PHY 21040, two hours weekly. (Repeatable for credit) Experiments in classical and modern physics are selected to accompany and to supplement junior-level physics courses.</td>
<td>None.</td>
<td>Laboratory</td>
<td>3 lab</td>
<td>Standard Letter-IP</td>
<td>Writing Intensive Course</td>
</tr>
<tr>
<td>PHY 30095</td>
<td>SPECIAL TOPICS</td>
<td>1-3</td>
<td>Topic announced when scheduled. (Repeatable for credit)</td>
<td>Permission.</td>
<td>Lecture</td>
<td>1-3 lecture</td>
<td>Standard Letter-IP</td>
<td>Writing Intensive Course</td>
</tr>
<tr>
<td>PHY 32511</td>
<td>ELECTRONICS</td>
<td>4</td>
<td>"Hands-on" course to give the student a working knowledge of analog electronics and of AC and DC circuits typically used by the scientist.</td>
<td>MATH 12002 and; PHY 13002 or PHY 23102.</td>
<td>Combined Lecture and Lab</td>
<td>6 other</td>
<td>Standard Letter-IP</td>
<td>Writing Intensive Course</td>
</tr>
<tr>
<td>PHY 34000</td>
<td>COSMOLOGY</td>
<td>3</td>
<td>This course will provide a quantitative introduction to modern cosmology, from the Big Bang to the formation of the first stars. Subjects include the evolution of the geometry and temperature of the universe its composition and select aspects of general relativity.</td>
<td>PHY 36001.</td>
<td>Lecture</td>
<td>3 lecture</td>
<td>Standard Letter-IP</td>
<td>Writing Intensive Course</td>
</tr>
</tbody>
</table>
PHY 35101 CLASSICAL MECHANICS 4 Credit Hours
Modern description of mechanics including both LaGrangian and Hamilton formulations, with applications to central force, motion, coupled oscillations, rigid body motion and motion in non-inertial reference frames.
Prerequisite: PHY 23102 and MATH 32052.
Schedule Type: Lecture
Contact Hours: 4 lecture
Grade Mode: Standard Letter

PHY 36001 INTRODUCTORY MODERN PHYSICS 3 Credit Hours
Special theory of relativity, Rutherford-Bohr model of atom, quantization of light, matter waves, Schroedinger equation, hydrogen atom, electron spin, multi-electron atoms.
Prerequisite: MATH 12003 and PHY 23102.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

PHY 36002 APPLICATIONS OF MODERN PHYSICS 3 Credit Hours
Survey of applications of twentieth century physics. Topics include molecular bonding, conducting and insulating solids, degenerate matter, quantum condensates, subatomic and sub-nuclear particle physics, cosmology.
Prerequisite: PHY 36001.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

PHY 40020 ADVANCED PHYSICS LABORATORY (WIC) 2 Credit Hours
(Repeatable for credit) Advanced experiments in classical and modern physics are selected to accompany and to supplement senior-level physics courses.
Prerequisite: PHY 30020, and pre- or corequisite: 6 credit hours of 40000-level physics courses.
Schedule Type: Laboratory
Contact Hours: 3 lab
Grade Mode: Standard Letter
Attributes: Writing Intensive Course

PHY 40060 PHYSICAL LITERATURE 1-3 Credit Hours
Study of current or topical literature.
Prerequisite: Permission.
Schedule Type: Lecture
Contact Hours: 1-3 lecture
Grade Mode: Standard Letter

PHY 40095 SPECIAL TOPICS 1-3 Credit Hours
(Repeatable for credit) Topic announced when scheduled.
Prerequisite: Permission.
Schedule Type: Lecture
Contact Hours: 1-3 lecture
Grade Mode: Standard Letter

PHY 40096 INDIVIDUAL INVESTIGATION (ELR) 1-6 Credit Hours
(Repeatable for credit) Individual projects for physics majors.
Prerequisite: 20 hours of physics; and special approval of department chairperson.
Schedule Type: Individual Investigation
Contact Hours: 1-6 other
Grade Mode: Standard Letter-IP
Attributes: Experiential Learning Requirement

PHY 40099 SENIOR HONORS THESIS (ELR) 1-10 Credit Hours
Thesis for departmental, general or university honors must be 1-10 hours with continuous registration throughout the senior year beginning in the summer prior to the senior year. Students taking this course must consult with their department and the Honors College and receive approval prior to the first semester of the senior year.
Prerequisite: Honors senior standing and special approval.
Schedule Type: Senior Project/Honors Thesis
Contact Hours: 1-10 other
Grade Mode: Standard Letter-IP
Attributes: Experiential Learning Requirement

PHY 40195 SPECIAL TOPICS 1-3 Credit Hours
(Repeatable for credit) (Slashed with PHY 50195) Topic announced when scheduled.
Prerequisite: special approval.
Schedule Type: Lecture
Contact Hours: 1-3 lecture
Grade Mode: Standard Letter

PHY 41010 BIOPHOTONICS 3 Credit Hours
(Slashed with PHY 51010; Cross-listed with BSCI 41110 and BSCI 51110 and CHEM 41010 and CHEM 51010) Interdisciplinary overview of the basics of biophotonics; application of biophotonic techniques to probe biological samples. Introduction to the foundations of optics and photonics and how the molecular structure of organic molecules translates into unique photonic properties and targeting in biological cells or tissue. Preparation of fluorescent materials, advanced spectroscopy and cell visualization using regular and confocal fluorescence microscopy.
Prerequisite: special approval.
Schedule Type: Combined Lecture and Lab
Contact Hours: 1 lecture, 6 lab
Grade Mode: Standard Letter

PHY 44600 INTRODUCTION TO BIOLOGICAL PHYSICS 3 Credit Hours
Introduces ideas essential to physical understanding of biological systems. Topics include: introduction to molecular components of the cell; statistical mechanics and transport in biological systems; selected topics in biophysics.
Prerequisite: PHY 23102.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

PHY 44802 ASTROPHYSICS 3 Credit Hours
Galactic structure, stellar formation and evolution, origin of the elements (or nucleosynthesis), nonoptical astronomies, and description of various cosmological theories.
Prerequisite: MATH 12003.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter
PHY 45201 ELECTROMAGNETIC THEORY 4 Credit Hours
Properties of electric and magnetic fields developed by vector methods. Treatment on static fields in vacuum and matter. Theory of classical electromagnetic fields with emphasis on dynamic fields.
Prerequisite: MATH 32052 and PHY 23102.
Schedule Type: Lecture
Contact Hours: 4 lecture
Grade Mode: Standard Letter

PHY 45301 THERMAL PHYSICS 3 Credit Hours
An introduction to thermodynamics and statistical mechanics, with applications in material science and engineering.
Prerequisite: PHY 36001.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

PHY 45401 MATHEMATICAL METHODS IN PHYSICS 4 Credit Hours
Consolidation of vector analysis, curvilinear coordinate systems, tensors, matrix algebra, vector spaces, common groups in physics, calculus of residues, contour integration, methods for differential equations in physics; additional topics important for physics selected from special functions, integral equations, calculus of variations.
Prerequisite: MATH 32052.
Schedule Type: Lecture
Contact Hours: 4 lecture
Grade Mode: Standard Letter

PHY 45403 DATA ANALYSIS AND COMPUTATIONAL PHYSICS TECHNIQUES 3 Credit Hours
Prerequisite: MATH 12003 and PHY 23102.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

PHY 45501 ELECTROMAGNETIC WAVES AND MODERN OPTICS 3 Credit Hours
Interactions between light and matter from both a macroscopic and microscopic perspective; producing and controlling light devices and spectroscopic techniques based on modern optics.
Prerequisite: PHY 45201.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

PHY 46101 QUANTUM MECHANICS 4 Credit Hours
Systematic introduction to the principles and solution techniques of quantum mechanics, including the Schroedinger equation in one and three dimensions. Topics include: angular momentum formalism, introductory Dirac notation and vector space formalism, intrinsic spin, identical particle systems and perturbation theory.
Prerequisite: PHY 36001.
Pre/corequisite: MATH 32052.
Schedule Type: Lecture
Contact Hours: 4 lecture
Grade Mode: Standard Letter

PHY 46301 INTRODUCTION TO NUCLEAR AND PARTICLE PHYSICS 4 Credit Hours
(Cross-listed with PHY 56301) Introduction to nuclear and particle physics including particle detectors and accelerators, experimental techniques, nuclear fission and fusion, nuclear reactors, medical applications, and connections to astrophysics and cosmology.
Prerequisite: PHY 36001.
Pre/corequisite: MATH 32052.
Schedule Type: Lecture
Contact Hours: 4 lecture
Grade Mode: Standard Letter

PHY 46401 INTRODUCTION TO SOLID STATE PHYSICS 3 Credit Hours
Fundamental unifying concepts and experimental techniques needed to understand thermal, electrical and optical properties of ions and electrons in solids. Special topics of current research.
Prerequisite: PHY 36001.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

PHY 50020 ADVANCED PHYSICS LAB 2 Credit Hours
(Repeatable for credit) Advanced experiments in classical and modern physics are selected to accompany and to supplement graduate-level physics courses.
Prerequisite: Graduate standing.
Schedule Type: Laboratory
Contact Hours: 3 lab
Grade Mode: Standard Letter

PHY 50093 VARIABLE TITLE WORKSHOP IN PHYSICS 1-6 Credit Hours
(Repeatable for credit) Workshops individually designed to provide instruction and training in specific areas of physics.
Prerequisite: Special approval and graduate standing.
Schedule Type: Workshop
Contact Hours: 1-6 other
Grade Mode: Satisfactory/Unsatisfactory

PHY 50095 SPECIAL TOPICS 1-3 Credit Hours
(Repeatable for credit) Topic announced when scheduled.
Prerequisite: Special approval and graduate standing.
Schedule Type: Lecture
Contact Hours: 1-3 lab
Grade Mode: Standard Letter

PHY 50096 INDIVIDUAL INVESTIGATION 1-3 Credit Hours
(Repeatable for credit) Individual projects for physics graduate students.
Prerequisite: Graduate standing.
Schedule Type: Individual Investigation
Contact Hours: 1-3 other
Grade Mode: Standard Letter-S/U-IP

PHY 50195 SPECIAL TOPICS 1-3 Credit Hours
(Repeatable for credit) (Slashed with PHY 40195). Topic announced when scheduled.
Prerequisite: special approval and graduate standing.
Schedule Type: Lecture
Contact Hours: 1-3 lecture
Grade Mode: Standard Letter
PHY 51010 BIOPHOTONICS 3 Credit Hours
(Slashed with PHY 41010; Cross-listed with BSCI 41110 and BSCI 51110 and CHEM 41010 and CHEM 51010) Interdisciplinary overview of the basics of biophotonics; application of biophotonic techniques to probe biological samples. Introduction to the foundations of optics and photonics and how the molecular structure of organic molecules translates into unique photonic properties and targeting in biological cells or tissue. Preparation of fluorescent materials, advanced spectroscopy and cell visualization using regular and confocal fluorescence microscopy.
Prerequisite: special approval and graduate standing.
Schedule Type: Combined Lecture and Lab
Contact Hours: 1 lecture, 6 lab
Grade Mode: Standard Letter

PHY 54600 INTRODUCTION TO BIOLOGICAL PHYSICS 3 Credit Hours
Introduces ideas essential to physical understanding of biological systems. Topics include: introduction to molecular components of the cell; statistical mechanics and transport in biological systems; selected topics in biophysics.
Prerequisite: Special approval and graduate standing.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

PHY 54802 ASTROPHYSICS 3 Credit Hours
Galactic structure, stellar formation and evolution, origin of the elements (or nucleosynthesis), non optical astronomies, and a description of various cosmological theories. Graduate standing.
Prerequisite: MATH 12003.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

PHY 55201 ELECTROMAGNETIC THEORY 4 Credit Hours
Properties of electric and magnetic fields developed by vector methods. Treatment of static fields in vacuum and matter. Theory of classical electromagnetic fields with emphasis on dynamic fields.
Prerequisite: graduate standing.
Schedule Type: Lecture
Contact Hours: 4 lecture
Grade Mode: Standard Letter

PHY 55301 THERMAL PHYSICS 3 Credit Hours
An introduction to thermodynamics and statistical mechanics, with applications in material science and engineering.
Prerequisite: PHY 36001 and graduate standing.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

PHY 55401 MATHEMATICAL METHODS IN PHYSICS 4 Credit Hours
Consolidation of vector analysis, curvilinear coordinate systems, tensors, matrix algebra, vector spaces, common groups in physics, calculus of residues, contour integration, methods for differential equations in physics; additional topics important for physics selected from special functions, integral equations, calculus of variations.
Prerequisite: MATH 32052 and graduate standing.
Schedule Type: Lecture
Contact Hours: 4 lecture
Grade Mode: Standard Letter

PHY 55403 DATA ANALYSIS AND COMPUTATIONAL PHYSICS TECHNIQUES 3 Credit Hours
Prerequisite: MATH 12003 and PHY 23102 and graduate standing.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

PHY 55501 ELECTROMAGNETIC WAVES AND MODERN OPTICS 3 Credit Hours
Interactions between light and matter from both a macroscopic and microscopic perspective; producing and controlling light; devices and spectroscopic techniques based on modern optics.
Prerequisite: PHY 55201 and graduate standing.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

PHY 56101 QUANTUM MECHANICS 4 Credit Hours
Systematic introduction to the principles and solution techniques of quantum mechanics, including the Schroedinger equation in one and three dimensions. Topics include: angular momentum formalism, introductory Dirac notation and vector space formalism, intrinsic spin, identical particle systems, and perturbation theory.
Prerequisite: Special approval and graduate standing.
Schedule Type: Lecture
Contact Hours: 4 lecture
Grade Mode: Standard Letter

PHY 56301 INTRODUCTION TO NUCLEAR AND PARTICLE PHYSICS 4 Credit Hours
(Cross-listed with PHY 46301) Introduction to nuclear and particle physics including particle detectors and accelerators, experimental techniques, nuclear fission and fusion, nuclear reactors, medical applications, and connections to astrophysics and cosmology.
Prerequisite: graduate standing.
Schedule Type: Lecture
Contact Hours: 4 lecture
Grade Mode: Standard Letter

PHY 56401 INTRODUCTION TO SOLID STATE PHYSICS 3 Credit Hours
Fundamental unifying concepts and experimental techniques needed to understand thermal, electrical and optical properties of ions and electrons in solids. Special topics of current research.
Prerequisite: PHY 36002 and graduate standing.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

PHY 56501 PHYSICS SEMINAR 1 Credit Hour
(Repeatable for credit) Discussion of current literature or of original research in physics. Participation by students, faculty and guests.
Prerequisite: Graduate standing.
Schedule Type: Seminar
Contact Hours: 1 other
Grade Mode: Satisfactory/Unsatisfactory/IP
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
<th>Grade Mode</th>
<th>Contact Hours</th>
<th>Schedule Type</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 60093</td>
<td>VARIABLE TITLE WORKSHOP IN PHYSICS</td>
<td>1-6</td>
<td>Satisfactory/Unsatisfactory</td>
<td>3 other</td>
<td>Lecture</td>
<td>Graduate standing.</td>
</tr>
<tr>
<td>PHY 60094</td>
<td>COLLEGE TEACHING OF PHYSICS</td>
<td>1-3</td>
<td>Satisfactory/Unsatisfactory</td>
<td>1-3</td>
<td>Lecture</td>
<td>Graduate standing.</td>
</tr>
<tr>
<td>PHY 60098</td>
<td>RESEARCH</td>
<td>1-15</td>
<td>Satisfactory/Unsatisfactory</td>
<td>1-15</td>
<td>Research</td>
<td>Graduate standing.</td>
</tr>
<tr>
<td>PHY 60199</td>
<td>THESIS I</td>
<td>2-6</td>
<td>Satisfactory/Unsatisfactory</td>
<td>2-6</td>
<td>Lecture</td>
<td>Special approval of adviser and graduate standing.</td>
</tr>
<tr>
<td>PHY 60295</td>
<td>ADVANCED TOPICS</td>
<td>1-3</td>
<td>Satisfactory/Unsatisfactory</td>
<td>3</td>
<td>Lecture</td>
<td>Special approval of adviser and graduate standing.</td>
</tr>
<tr>
<td>PHY 60299</td>
<td>THESIS II</td>
<td>2</td>
<td>Satisfactory/Unsatisfactory</td>
<td>2</td>
<td>Lecture</td>
<td>PHY 60199 and graduate standing.</td>
</tr>
<tr>
<td>PHY 64101</td>
<td>ADVANCED PROBLEM SOLVING IN PHYSICS</td>
<td>3</td>
<td>Satisfactory/Unsatisfactory</td>
<td>3</td>
<td>Lecture</td>
<td>PHY 6/75101 or PHY 6/75203 or PHY 6/76161 or PHY 6/75301 or departmental instructor approval.</td>
</tr>
<tr>
<td>PHY 65101</td>
<td>CLASSICAL MECHANICS</td>
<td>3</td>
<td>Satisfactory/Unsatisfactory</td>
<td>3</td>
<td>Lecture</td>
<td>PHY 6/75101 or PHY 6/75203 or PHY 6/76161 or PHY 6/75301 or departmental instructor approval.</td>
</tr>
<tr>
<td>PHY 65203</td>
<td>CLASSICAL ELECTRODYNAMICS I</td>
<td>3</td>
<td>Satisfactory/Unsatisfactory</td>
<td>3</td>
<td>Lecture</td>
<td>PHY 6/75203 and graduate standing.</td>
</tr>
<tr>
<td>PHY 65204</td>
<td>CLASSICAL ELECTRODYNAMICS II</td>
<td>3</td>
<td>Satisfactory/Unsatisfactory</td>
<td>3</td>
<td>Lecture</td>
<td>PHY 6/75203 and graduate standing.</td>
</tr>
<tr>
<td>PHY 65301</td>
<td>STATISTICAL MECHANICS I</td>
<td>4</td>
<td>Satisfactory/Unsatisfactory</td>
<td>4</td>
<td>Lecture</td>
<td>PHY 6/75203 and graduate standing.</td>
</tr>
<tr>
<td>PHY 65101</td>
<td>QUANTUM MECHANICS I</td>
<td>3</td>
<td>Satisfactory/Unsatisfactory</td>
<td>3</td>
<td>Lecture</td>
<td>PHY 6/75101 or PHY 6/75203 or PHY 6/76161 or PHY 6/75301 or departmental instructor approval.</td>
</tr>
<tr>
<td>PHY 65101</td>
<td>QUANTUM MECHANICS II</td>
<td>3</td>
<td>Satisfactory/Unsatisfactory</td>
<td>3</td>
<td>Lecture</td>
<td>PHY 6/75101 or PHY 6/75203 or PHY 6/76161 or PHY 6/75301 or departmental instructor approval.</td>
</tr>
<tr>
<td>PHY 66162</td>
<td>QUANTUM MECHANICS II</td>
<td>3</td>
<td>Satisfactory/Unsatisfactory</td>
<td>3</td>
<td>Lecture</td>
<td>PHY 6/75101 or PHY 6/75203 or PHY 6/76161 or PHY 6/75301 or departmental instructor approval.</td>
</tr>
<tr>
<td>PHY 66162</td>
<td>PARTICLE PHYSICS</td>
<td>3</td>
<td>Satisfactory/Unsatisfactory</td>
<td>3</td>
<td>Lecture</td>
<td>PHY 6/75101 or PHY 6/75203 or PHY 6/76161 or PHY 6/75301 or departmental instructor approval.</td>
</tr>
</tbody>
</table>
PHY 66302 MODERN NUCLEAR PHYSICS 3 Credit Hours
Survey of basic physics of nucleons and nuclei including associated experimental techniques, emphasizing interaction of radiation with matter. Applications covered include detectors, electron scattering from nuclei, quark-parton model of the nucleon, heavy-ion collisions, quark-gluon plasma, and nuclear astrophysics.
Prerequisite: PHY 56101; and graduate standing.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

PHY 66401 SOLID STATE PHYSICS I 3 Credit Hours
Crystalline state, with emphasis on wave propagation, zone and band theory, phonons. Applications to electrical and thermal conductivities, specific heats, optical, dielectric and magnetic properties.
Prerequisite: PHY 56101 or PHY 6/76161; and graduate standing.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

PHY 66403 ADVANCED CONDENSED MATTER PHYSICS 3 Credit Hours
(Slashed with PHY 76403) Advanced theories of solids, fluids, superfluids, magnetic, ferroelectric and liquid crystal systems and the experimental methods that probe them.
Prerequisite: PHY 66402 and graduate standing.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

PHY 68401 LIQUID CRYSTAL PHYSICS 3 Credit Hours
The molecular structure and properties of liquid crystals and their role in biological systems and industrial applications.
Prerequisite: Graduate standing in physics or chemical physics.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

PHY 69001 COLLEGE TEACHING OF PHYSICS 1-3 Credit Hours
(Repeatable for credit)Methodology of teaching in a university, college or junior college. Includes observation of kinds of teaching and practice teaching.
Prerequisite: Doctoral standing.
Schedule Type: Lecture
Contact Hours: 1-3 lecture
Grade Mode: Satisfactory/Unsatisfactory-IP

PHY 69005 SPECIAL TOPICS 1-3 Credit Hours
(Repeatable for credit)Topic announced when scheduled.
Prerequisite: Special approval and doctoral standing.
Schedule Type: Lecture
Contact Hours: 1-3 lecture
Grade Mode: Standard Letter

PHY 70295 ADVANCED TOPICS 1-3 Credit Hours
(Repeatable for credit)Selected special topics of current research interest.
Prerequisite: Special approval and doctoral standing.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter-S/U-IP

PHY 74101 ADVANCED PROBLEM SOLVING IN PHYSICS 3 Credit Hours
The course imparts advanced problem-solving skills not acquired in regular courses. Examples from four basic areas of physics (classical mechanics, electricity and magnetism, quantum mechanics and statistical physics) will be emphasized. Doctoral standing.
Prerequisite: PHY 6/75101 or PHY 6/75203 or PHY 6/76161 or PHY 6/75301; or departmental instructor approval.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

PHY 75101 CLASSICAL MECHANICS 3 Credit Hours
Lagrange's equations, variational principles, two-body central force problems, rigid body motion, Hamilton's equations, canonical transformations, Hamilton-Jacobi theory, small oscillations.
Prerequisite: Special approval and doctoral standing.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

PHY 75203 CLASSICAL ELECTRODYNAMICS I 3 Credit Hours
Introduction to electrostatics, boundary value problems, multipoles, electrostatics of macroscopic media, magnetostatics, time-varying fields, Maxwell's equations, conservation laws.
Prerequisite: Special approval and doctoral standing.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

PHY 75204 CLASSICAL ELECTRODYNAMICS II 3 Credit Hours
Plane electromagnetic waves, simple radiating systems, scattering special theory of relativity, relativistic dynamics, radiation of moving charges, Bremsstrahlung.
Prerequisite: PHY 6/75203 and doctoral standing.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

PHY 75301 STATISTICAL MECHANICS I 4 Credit Hours
An introduction to statistical mechanics, including classical and quantum statistics. Derives thermodynamic quantities from a statistical viewpoint.
Prerequisite: Doctoral standing.
Schedule Type: Lecture
Contact Hours: 4 lecture
Grade Mode: Standard Letter

PHY 76161 QUANTUM MECHANICS I 3 Credit Hours
Prerequisite: Permission and doctoral standing.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter
PHY 76162 QUANTUM MECHANICS II 3 Credit Hours
Prerequisite: PHY 6/76161 and doctoral standing.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

PHY 76163 QUANTUM MECHANICS III 3 Credit Hours
Second quantization and field theory formalism are developed for the many-particle system. Topics include the electron gas and nuclear matter.
Prerequisite: PHY 6/76162 and doctoral standing.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

PHY 76201 PARTICLE PHYSICS 3 Credit Hours
Discussion of particle detectors, invariance principles and conservation laws, fundamental interactions, quark model of hadrons, basic concepts of a field theory, the Standard Model and selected topics of current interest.
Prerequisite: PHY 6/76162 and doctoral standing.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

PHY 76303 APPLICATIONS OF QUANTUM CHROMODYNAMICS 3 Credit Hours
Introduces the key attributes and techniques of Quantum Chromodynamics, which is the relativistic quantum field theory of the strong interaction. Topics treated include the properties, structure and interactions of strongly interacting sub-nuclear particles (hadrons) and the physics of hadronic and nuclear matter at finite temperature and density, as applicable to modern nuclear particle physics research.
Prerequisite: PHY 76163.
Corequisite: PHY 66201 or PHY 76201.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

PHY 76401 LIQUID CRYSTAL PHYSICS 3 Credit Hours
The molecular structure and properties of liquid crystals and their role in biological systems and industrial applications.
Prerequisite: Doctoral standing in physics or chemical physics.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter

PHY 76403 ADVANCED CONDENSED MATTER PHYSICS 3 Credit Hours
(Slashed with PHY 66403) Advanced theories of solids, fluids, superfluids, magnetic, ferroelectric and liquid crystal systems, and the experimental methods that probe them.
Prerequisite: PHY 66402 or 76402; and doctoral standing.
Schedule Type: Lecture
Contact Hours: 3 lecture
Grade Mode: Standard Letter