AEROSPACE ENGINEERING - B.S.

College of Aeronautics and Engineering
www.kent.edu/cae

About This Program
Aerospace engineers are at the forefront of exciting advances in rockets, advanced air-mobility, drone development and logistics and advanced aircraft. Our program prepares students to contribute to these exciting developments through theoretical and practical courses; internships; group projects; and a multiple major, two-semester capstone experience. Read more...

Contact Information
• cae@kent.edu | 330-672-2892
• Speak with an Advisor
• Chat with an Admissions Counselor

Program Delivery
• Delivery:
 • In person
• Location:
 • Kent Campus

Examples of Possible Careers and Salaries*
Aerospace engineers
• 2.8% slower than the average
• 66,400 number of jobs
• $118,610 potential earnings

Mechanical engineers
• 3.9% about as fast as the average
• 316,300 number of jobs
• $90,160 potential earnings

Architectural and engineering managers
• 2.6% slower than the average
• 198,100 number of jobs
• $149,530 potential earnings

Accreditation
The Bachelor of Science degree in Aerospace Engineering is accredited by the Engineering Accreditation Commission of ABET, www.abet.org, under the General Criteria and the Program Criteria for Aerospace Engineering and Similarly Named Programs.

* Source of occupation titles and labor data comes from the U.S. Bureau of Labor Statistics' Occupational Outlook Handbook. Data comprises projected percent change in employment over the next 10 years; nation-wide employment numbers; and the yearly median wage at which half of the workers in the occupation earned more than that amount and half earned less.

Admission Requirements
The university affirmatively strives to provide educational opportunities and access to students with varied backgrounds, those with special talents and adult students who graduated from high school three or more years ago.

Admission to the Aerospace Engineering major is selective.

New Students: Admission into this major requires:
• Minimum 3.0 high school GPA
• Clear demonstration of an ability to be placed directly into MATH 12002 (or its equivalent); this will occur if the student is currently taking or has taken a calculus, pre-calculus or trigonometry course with a minimum C grade

Students who do not meet the above requirements will be admitted to the Aeronautical Systems Engineering Technology major, provided they meet the minimum program requirements.

Note: Applicants should understand that this is a math-intensive program. Students admitted to the program are expected to demonstrate prerequisite knowledge on a math placement exam (the ALEKS exam) prior to starting their first semester. Students who do not obtain the minimum score required to place into MATH 12002 will have their major changed to Aeronautical Systems Engineering Technology prior to their freshman year.

Current Students: Students accepted into the Aeronautical Systems Engineering Technology major may request a change in major to Aerospace Engineering as soon as placement into MATH 12002 has been demonstrated (prior to the beginning of freshman year). Otherwise, students may request to change their major to Aerospace Engineering after their freshman year if they meet the following criteria:
• Minimum 3.000 overall Kent State GPA
• Minimum C grade in both MATH 12002 and PHY 23101

Transfer Students: Admission into this major requires:
• Minimum 12 credit hours of college-level coursework
• Minimum 3.000 overall GPA
• Minimum C grade in both MATH 12002 and PHY 23101 (or their equivalents)

Transfer students who have completed fewer than 12 credit hours of college-level coursework will be evaluated on both collegiate and high school records and must submit a final high school transcript.

International Students: All international students must provide proof of English language proficiency (unless they meet specific exceptions to waive) by earning a minimum 71 TOEFL iBT score, minimum 6.0 IELTS score, minimum 47 PTE score or minimum 100 DET score, or by completing the ELS level 112 Intensive English Program. For more information on international admission visit the admissions website for international students.
Program Requirements

Major Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AERN 35150</td>
<td>AIRCRAFT STRUCTURES</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 11001</td>
<td>INTRODUCTION TO ENGINEERING</td>
<td>2</td>
</tr>
<tr>
<td>ENGR 11002</td>
<td>INTRODUCTION TO ENGINEERING LABORATORY</td>
<td>1</td>
</tr>
<tr>
<td>ENGR 13586 & ENGR 13587</td>
<td>COMPUTER AIDED DESIGN I and COMPUTER AIDED DESIGN I LABORATORY</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 15300</td>
<td>INTRODUCTION TO ENGINEERING ANALYSIS USING MATLAB® LAB</td>
<td>2</td>
</tr>
<tr>
<td>ENGR 15301</td>
<td>INTRODUCTION TO ENGINEERING ANALYSIS USING MATLAB®</td>
<td>1</td>
</tr>
<tr>
<td>ENGR 20000</td>
<td>PROFESSIONAL DEVELOPMENT IN ENGINEERING</td>
<td>1</td>
</tr>
<tr>
<td>ENGR 20002</td>
<td>MATERIALS AND PROCESSES</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 25200</td>
<td>STATICS (min C grade)</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 25400</td>
<td>DYNAMICS (min C grade)</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 25500</td>
<td>AERODYNAMICS FOR ENGINEERS I (min C grade)</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 33041</td>
<td>CONTROL SYSTEMS</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 35200</td>
<td>THERMAL FLUID ENGINEERING</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 35201</td>
<td>THERMAL FLUID ENGINEERING LABORATORY</td>
<td>1</td>
</tr>
<tr>
<td>ENGR 35300</td>
<td>AIRCRAFT PERFORMANCE AND STABILITY I</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 35500</td>
<td>SIGNALS AND CIRCUITS</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 35501</td>
<td>SIGNALS AND CIRCUITS LABORATORY</td>
<td>1</td>
</tr>
<tr>
<td>ENGR 35600</td>
<td>AERODYNAMICS FOR ENGINEERS II</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 42111</td>
<td>STRENGTH OF MATERIALS FOR ENGINEERS</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 42363</td>
<td>MATERIALS SELECTION IN DESIGN AND APPLICATIONS</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 45121</td>
<td>AEROSPACE PROPULSION ENGINEERING</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 45600</td>
<td>AIRCRAFT PERFORMANCE AND STABILITY II</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 45901</td>
<td>INTRODUCTION TO FINITE ELEMENT METHOD AND APPLICATIONS</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 48001</td>
<td>ORBITAL MECHANICS</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 48099</td>
<td>ENGINEERING CAPSTONE I (ELR)</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 48199</td>
<td>ENGINEERING CAPSTONE II (ELR) (WIC)</td>
<td>3</td>
</tr>
</tbody>
</table>

Specialization, choose from the following:

- **CAE 45092** AERONAUTICS AND ENGINEERING INTERNSHIP/COOPERATIVE EDUCATION (ELR) (WIC) 3

Machine Design

- ENGR 43580 COMPUTER-AIDED MACHINE DESIGN

Materials

- ENGR 42710 ADDITIVE MANUFACTURING
- & ENGR 42711 ADDITIVE MANUFACTURING LABORATORY

Patent and Engineering Law

- ENGR 35550 LAW AND ETHICS FOR ENGINEERS

Space Applications

- ENGR 48002 SPACECRAFT ATTITUDE DYNAMICS, DETERMINATION AND CONTROL
- ENGR 48003 SPACECRAFT DESIGN

Systems Engineering and Optimization

- ENGR 42410 ENGINEERING OPTIMIZATION

Additional Requirements (courses do not count in major GPA)

- MATH 12002 ANALYTIC GEOMETRY AND CALCULUS I (KMCR)
- MATH 12003 ANALYTIC GEOMETRY AND CALCULUS II
- MATH 32051 MATHEMATICAL METHODS IN THE PHYSICAL SCIENCES I
- MATH 32052 MATHEMATICAL METHODS IN THE PHYSICAL SCIENCES II
- MATH 21001 LINEAR ALGEBRA
- & MATH 22005 and ANALYTIC GEOMETRY AND CALCULUS III
- & MATH 32044 and ORDINARY DIFFERENTIAL EQUATIONS
- UC 10001 FLASHERS 101

Engineering Internship

- CAE 45096 INDIVIDUAL INVESTIGATION IN AERONAUTICS AND ENGINEERING

Undergraduate Research

- UC 10001 FLASHERS 101

Minimum Total Credit Hours: 124

1. ENGR 48099 and ENGR 48199 must be taken during the same academic year.
2. A minimum C grade must be earned to fulfill the writing-intensive requirement.
3. To reduce the total number of required credit hours, students are advised to take MATH 32051 and MATH 32052. The other alternative courses are listed for students who have already taken college coursework elsewhere or are off track with respect to the roadmap.

Graduation Requirements

<table>
<thead>
<tr>
<th>Minimum Major GPA</th>
<th>Minimum Overall GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.750</td>
<td>2.500</td>
</tr>
</tbody>
</table>

Roadmap

This roadmap is a recommended semester-by-semester plan of study for this major. However, courses designated as critical (!) must be completed in the semester listed to ensure a timely graduation.

<table>
<thead>
<tr>
<th>Semester One</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 11001</td>
<td>2</td>
</tr>
<tr>
<td>ENGR 11002</td>
<td>1</td>
</tr>
<tr>
<td>ENGR 15300</td>
<td>2</td>
</tr>
<tr>
<td>ENGR 15301</td>
<td>1</td>
</tr>
<tr>
<td>! MATH 12002</td>
<td>5</td>
</tr>
<tr>
<td>UC 10001</td>
<td>1</td>
</tr>
</tbody>
</table>

Kent Core Requirement 3
<table>
<thead>
<tr>
<th>Semester Two</th>
<th>Kent Core Requirement</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEMI/S</td>
<td>Credit Hours</td>
<td>17</td>
</tr>
<tr>
<td>ENGR 48001</td>
<td>ENGR 45600</td>
<td>3</td>
</tr>
<tr>
<td>or MERT 12001</td>
<td>or COMPUTER-AIDED DESIGN</td>
<td>3</td>
</tr>
<tr>
<td>! MATH 12003</td>
<td>! MATH 12003</td>
<td>5</td>
</tr>
<tr>
<td>! PHY 23101</td>
<td>! PHY 23101</td>
<td>5</td>
</tr>
</tbody>
</table>

University Requirements

All students in a bachelor's degree program at Kent State University must complete the following university requirements for graduation.

NOTE: University requirements may be fulfilled in this program by specific course requirements. Please see Program Requirements for details.

- Flashes 101 (UC 10001) 1 credit hour
- Course is not required for students with 30+ transfer credits (excluding College Credit Plus) or age 21+ at time of admission.
- Diversity Domestic/Global (DV/DIV) 2 courses
- Students must successfully complete one domestic and one global course, of which one must be from the Kent Core.
- Experiential Learning Requirement (ELR) varies
- Students must successfully complete one course or approved experience.
- Kent Core (see table below) 36-37 credit hours
- Writing-Intensive Course (WIC) 1 course
- Students must earn a minimum C grade in the course.
- Upper-Division Requirement 39 credit hours
- Students must successfully complete 39 upper-division (numbered 30000 to 49999) credit hours to graduate.

Total Credit Hour Requirement 120 credit hours

Kent Core Requirements

- Kent Core Composition (KCMRP) 6
- Kent Core Mathematics and Critical Reasoning (KMCR) 3
- Kent Core Humanities and Fine Arts (KHHFA) (min one course each) 9
- Kent Core Social Sciences (KSS) (must be from two disciplines) 6
- Kent Core Basic Sciences (KBS/KLAB) (must include one laboratory) 6-7
- Kent Core Additional (KADL) 6

Total Credit Hours: 36-37

Program Learning Outcomes

Graduates of this program will be able to:

1. Identify, formulate and solve complex engineering problems by applying principles of engineering, science and mathematics.
2. Apply engineering design to produce solutions that meet specified needs with consideration of public health, safety and welfare, as well as global, cultural, social, environmental and economic factors.
3. Communicate effectively with a range of audiences.
4. Recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental and societal contexts.
5. Function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks and meet objectives.
6. Develop and conduct appropriate experimentation, analyze and interpret data and use engineering judgment to draw conclusions.
7. Acquire and apply new knowledge as needed, using appropriate learning strategies.

The educational objectives of the program are the following:

1. Drive positive change in the community by engaging in careers in the field of aerospace engineering and beyond in a manner that promotes excellence and integrity.
2. Practice forward-thinking through continued education by way of graduate education, professional development and other continued self-motivated learning.
3. Successfully navigate the ever-changing trajectory of the world, practicing compassion as you strive to meet your personal career goals.

Full Description

The Bachelor of Science degree in Aerospace Engineering successfully prepares the aerospace engineers of the future to work in multidisciplinary teams to design products and perform research in innovative ways that affect positive change on a regional, national and global scale. The program focuses on the application of engineering principles to the design, manufacturing and functionality of aerospace vehicles such as aircraft, missiles and spacecraft. Students gain in-depth knowledge of aerodynamics, engineering materials and processes, structures, propulsion, flight mechanics and control, while being exposed to orbital mechanics, space structures and rocket propulsion.

Applicants to this program should understand that this is a math-intensive program.

Students may apply early to the M.S. degree in Aerospace Engineering and double count 9 credit hours of graduate courses toward both degree programs. See the Combined Bachelor’s/Master’s Degree Program policy in the University Catalog for more information.