AEROSPACE ENGINEERING - M.S.

College of Aeronautics and Engineering
www.kent.edu/cae

About This Program
The Master of Science degree in Aerospace Engineering provides an advanced theoretical and/or research-oriented curriculum with significant depth in aerospace-specific disciplines, beyond the general fundamentals of the engineering bachelor’s degree.

Contact Information
• Program Coordinator: Ali Abdul-Aziz, Ph.D., P.E. | CAEgraduatemstudies@kent.edu | 330-672-1032
• Connect with an Admissions Counselor: U.S. Student | International Student

Program Delivery
• Delivery:
 • In person
• Location:
 • Kent Campus

Examples of Possible Careers and Salaries*
Aerospace engineers
 • 2.8% slower than the average
 • 66,400 number of jobs
 • $118,610 potential earnings

Architectural and engineering managers
 • 2.6% slower than the average
 • 198,100 number of jobs
 • $149,530 potential earnings

Avionics technicians
 • 4.4% about as fast as the average
 • 22,800 number of jobs
 • $67,840 potential earnings

Engineering teachers, postsecondary
 • 8.6% much faster than the average
 • 44,600 number of jobs
 • $103,600 potential earnings

* Source of occupation titles and labor data comes from the U.S. Bureau of Labor Statistics’ Occupational Outlook Handbook. Data comprises projected percent change in employment over the next 10 years; nation-wide employment numbers; and the yearly median wage at which half of the workers in the occupation earned more than that amount and half earned less.

For more information about graduate admissions, visit the graduate admission website. For more information on international admissions, visit the international admission website.

Admission Requirements
• Bachelor’s degree in aerospace engineering or a closely related area from an accredited college or university
• Minimum 2.750 undergraduate GPA on a 4.000-point scale
• Official transcript(s)
• Goal statement
• Three letters of recommendation
• English language proficiency - all international students must provide proof of English language proficiency (unless they meet specific exceptions to waive) by earning one of the following:
 • Minimum 79 TOEFL iBT score
 • Minimum 6.5 IELTS score
 • Minimum 58 PTE score
 • Minimum 110 DET score

1 International applicants who do not meet the above test scores may be considered for conditional admission.

Application Deadlines
• Fall Semester
 • Application deadline: March 1
 • Applications submitted after this deadline will be considered on a space-available basis.
• Spring Semester
 • Application deadline: Rolling admissions

Program Requirements

Major Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 61091</td>
<td>GRADUATE SEMINAR</td>
<td>1</td>
</tr>
<tr>
<td>ENGR 65098</td>
<td>RESEARCH</td>
<td>3</td>
</tr>
<tr>
<td>MATH 50015</td>
<td>APPLIED STATISTICS</td>
<td></td>
</tr>
<tr>
<td>MATH 52011</td>
<td>MATHEMATICAL OPTIMIZATION</td>
<td></td>
</tr>
<tr>
<td>MATH 52031</td>
<td>MATHEMATICAL MODELS AND DYNAMICAL SYSTEMS</td>
<td></td>
</tr>
<tr>
<td>MATH 52045</td>
<td>PARTIAL DIFFERENTIAL EQUATIONS</td>
<td></td>
</tr>
<tr>
<td>MATH 52201</td>
<td>NUMERICAL COMPUTING I</td>
<td></td>
</tr>
<tr>
<td>MATH 52202</td>
<td>NUMERICAL COMPUTING II</td>
<td></td>
</tr>
<tr>
<td>ENGR 58001</td>
<td>ORBITAL MECHANICS</td>
<td></td>
</tr>
<tr>
<td>ENGR 58002</td>
<td>SPACECRAFT ATTITUDE DYNAMICS, DETERMINATION AND CONTROL</td>
<td></td>
</tr>
<tr>
<td>ENGR 58004</td>
<td>OPTIMAL CONTROL THEORY</td>
<td></td>
</tr>
<tr>
<td>ENGR 68005</td>
<td>LINEAR SYSTEM ANALYSIS AND CONTROL</td>
<td></td>
</tr>
<tr>
<td>ENGR 68006</td>
<td>NONLINEAR SYSTEMS AND CONTROL</td>
<td></td>
</tr>
<tr>
<td>ENGR 68007</td>
<td>DIGITAL CONTROL SYSTEMS</td>
<td></td>
</tr>
</tbody>
</table>
1. Conduct literature searches, comprehend advanced research materials and uncover connections between related work.
2. Perform research, discovery and integration by applying advanced knowledge of aerospace engineering.
3. Communicate problems and solutions in aerospace engineering clearly, both verbally and in writing.

Program Learning Outcomes
Graduates of this program will be able to: