AEROSPACE ENGINEERING - M.S.

College of Aeronautics and Engineering
www.kent.edu/cae

About This Program
Experience the forefront of aerospace engineering through an advanced master’s program, designed to equip you with the skills and knowledge needed to excel in the dynamic aerospace industry. Read more...

Contact Information
- Program Coordinator: Ali Abdul-Aziz, Ph.D., P.E. | CAEgraduatestudies@kent.edu | 330-672-1032
- Connect with an Admissions Counselor: U.S. Student | International Student

Program Delivery
- Delivery: In person
- Location: Kent Campus

Examples of Possible Careers and Salaries*

Aerospace engineers
- 2.8% slower than the average
- 66,400 number of jobs
- $118,610 potential earnings

Architectural and engineering managers
- 2.6% slower than the average
- 198,100 number of jobs
- $149,530 potential earnings

Avionics technicians
- 4.4% about as fast as the average
- 22,800 number of jobs
- $67,840 potential earnings

Engineering teachers, postsecondary
- 8.6% much faster than the average
- 44,600 number of jobs
- $103,600 potential earnings

* Source of occupation titles and labor data comes from the U.S. Bureau of Labor Statistics’ Occupational Outlook Handbook. Data comprises projected percent change in employment over the next 10 years; nation-wide employment numbers; and the yearly median wage at which half of the workers in the occupation earned more than that amount and half earned less.

Admission Requirements
- Bachelor’s degree in aerospace engineering or a closely related area from an accredited college or university
- Minimum 2.750 undergraduate GPA on a 4.000-point scale
- Official transcript(s)
- Goal Statement
- Three letters of recommendation
- English language proficiency - all international students must provide proof of English language proficiency (unless they meet specific exceptions) by earning one of the following:
 - Minimum 550 TOEFL PBT score
 - Minimum 79 TOEFL IBT score
 - Minimum 77 MELAB score
 - Minimum 6.5 IELTS score
 - Minimum 58 PTE score
 - Minimum 100 Duolingo English score

Applications submitted after this deadline will be considered on a space-available basis.

Program Requirements

Major Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 61091</td>
<td>GRADUATE SEMINAR</td>
<td>1</td>
</tr>
<tr>
<td>ENGR 65098</td>
<td>RESEARCH</td>
<td>3</td>
</tr>
<tr>
<td>MATH 50015</td>
<td>APPLIED STATISTICS</td>
<td></td>
</tr>
<tr>
<td>MATH 52011</td>
<td>MATHEMATICAL OPTIMIZATION</td>
<td></td>
</tr>
<tr>
<td>MATH 52031</td>
<td>MATHEMATICAL MODELS AND DYNAMICAL SYSTEMS</td>
<td></td>
</tr>
<tr>
<td>MATH 52045</td>
<td>PARTIAL DIFFERENTIAL EQUATIONS</td>
<td></td>
</tr>
<tr>
<td>MATH 52201</td>
<td>NUMERICAL COMPUTING I</td>
<td></td>
</tr>
<tr>
<td>MATH 52202</td>
<td>NUMERICAL COMPUTING II</td>
<td></td>
</tr>
<tr>
<td>ENGR 58001</td>
<td>ORBITAL MECHANICS</td>
<td></td>
</tr>
<tr>
<td>ENGR 58002</td>
<td>SPACECRAFT ATTITUDE DYNAMICS, DETERMINATION AND CONTROL</td>
<td></td>
</tr>
<tr>
<td>ENGR 58004</td>
<td>OPTIMAL CONTROL THEORY</td>
<td></td>
</tr>
<tr>
<td>ENGR 58005</td>
<td>LINEAR SYSTEM ANALYSIS AND CONTROL</td>
<td></td>
</tr>
<tr>
<td>ENGR 58006</td>
<td>NONLINEAR SYSTEMS AND CONTROL</td>
<td></td>
</tr>
<tr>
<td>ENGR 58007</td>
<td>DIGITAL CONTROL SYSTEMS</td>
<td></td>
</tr>
<tr>
<td>ENGR 58008</td>
<td>INTRODUCTION TO ROBUST CONTROL</td>
<td></td>
</tr>
<tr>
<td>ENGR 58101</td>
<td>AUTONOMOUS UNMANNED AERIAL SYSTEMS</td>
<td></td>
</tr>
</tbody>
</table>

Engineering-Focus Electives, choose one course from three focus areas:

Astronautics
- ENGR 58001
- ENGR 58002
- ENGR 58004
- ENGR 58101

Dynamics and Control
- ENGR 58005
- ENGR 58006
- ENGR 58007
- ENGR 58008

Structure and Materials
- ENGR 58009

For more information about graduate admissions, visit the graduate admission website. For more information on international admissions, visit the international admission website.
ENGR 52111 STRENGTH OF MATERIALS FOR ENGINEERS
ENGR 52363 MATERIALS SELECTION IN DESIGN AND APPLICATIONS
ENGR 55901 INTRODUCTION TO FINITE ELEMENT METHOD AND APPLICATIONS
Systems and Design
ENGR 55799 AIRCRAFT DESIGN I
ENGR 58003 SPACECRAFT DESIGN
ENGR 58102 INTELLIGENT SENSING AND PLANNING OF UNMANNED AERIAL SYSTEMS
Additional courses as approved by advisor

Engineering Electives, choose from the following: 9
ENGR 52111 STRENGTH OF MATERIALS FOR ENGINEERS
ENGR 52363 MATERIALS SELECTION IN DESIGN AND APPLICATIONS
ENGR 52410 ENGINEERING OPTIMIZATION
ENGR 55799 AIRCRAFT DESIGN I
ENGR 55901 INTRODUCTION TO FINITE ELEMENT METHOD AND APPLICATIONS
ENGR 57200 SYSTEMS ENGINEERING
ENGR 58001 ORBITAL MECHANICS
ENGR 58002 SPACECRAFT ATTITUDE DYNAMICS, DETERMINATION AND CONTROL
ENGR 58003 SPACECRAFT DESIGN
ENGR 58004 OPTIMAL CONTROL THEORY
ENGR 58005 LINEAR SYSTEM ANALYSIS AND CONTROL
ENGR 58006 NONLINEAR SYSTEMS AND CONTROL
ENGR 58007 DIGITAL CONTROL SYSTEMS
ENGR 58008 INTRODUCTION TO ROBUST CONTROL
ENGR 58101 AUTONOMOUS UNMANNED AERIAL SYSTEMS
ENGR 58102 INTELLIGENT SENSING AND PLANNING OF UNMANNED AERIAL SYSTEMS
ENGR 61096 INDIVIDUAL INVESTIGATION IN ENGINEERING
Additional courses as approved by advisor
Culminating Requirement
Choose from the following: 6
ENGR 65199 THESIS I

Courses from Major Electives

Minimum Total Credit Hours: 31

1. Students selecting the thesis option must successfully defend their research thesis in a public setting before the thesis committee. Upon approval of the thesis topic, the student is required to register continuously for ENGR 65199 each semester for a total of 6 credit hours. A student who has completed the required 6 credit hours of ENGR 65199 but has not finished the thesis is expected, thereafter, to register continuously for ENGR 65299 each semester until all degree requirements are met. No more than 6 credit hours of ENGR 65199 may be counted toward completion of degree requirements. Credit hours earned in ENGR 65299 do not, under any circumstances, count toward the degree.

Program Learning Outcomes
Graduates of this program will be able to:

1. Conduct literature searches, comprehend advanced research materials and uncover connections between related work.