APPLIED ENGINEERING - B.S.

College of Aeronautics and Engineering
www.kent.edu/cae

About This Program
The Bachelor of Science in Applied Engineering program teaches practical problem-solving skills and requires hands-on experience to prepare you for a fulfilling career in engineering. With access to state-of-the-art facilities, experienced faculty and real-world challenges, you will gain the skills needed to solve complex engineering problems and make an impact in industry. Read more...

Contact Information
• cae@kent.edu | 330-672-2892
• Speak with an Advisor
• Chat with an Admissions Counselor

Program Delivery
• Delivery: In person
• Location: Kent Campus

Examples of Possible Careers and Salaries*
Architectural and engineering managers
• 2.6% slower than the average
• 198,100 number of jobs
• $149,530 potential earnings

Industrial engineering technologists and technicians
• 1.5% slower than the average
• 68,500 number of jobs
• $57,320 potential earnings

Industrial production managers
• 0.9% little or no change
• 190,100 number of jobs
• $108,790 potential earnings

Materials engineers
• 1.5% slower than the average
• 27,500 number of jobs
• $95,640 potential earnings

Accreditation
The B.S. degree in Applied Engineering - Applied Engineering and Technology Management concentration is accredited by the Association of Technology, Management and Applied Engineering (ATMAE). The College of Aeronautics and Engineering is accredited as a “Certified School” by the Foundry Educational Foundation (fefinc.org).

Admission Requirements
The university affirmatively strives to provide educational opportunities and access to students with varied backgrounds, those with special talents and adult students who graduated from high school three or more years ago.

First-Year Students on the Kent Campus: First-year admission policy on the Kent Campus is selective. Admission decisions are based upon cumulative grade point average, strength of high school college preparatory curriculum and grade trends. Students not admissible to the Kent Campus may be administratively referred to one of the seven regional campuses to begin their college coursework. For more information, visit the admissions website for first-year students.

First-Year Students on the Regional Campuses: First-year admission to Kent State’s campuses at Ashtabula, East Liverpool, Geauga, Salem, Stark, Trumbull and Tuscarawas, as well as the Twinsburg Academic Center, is open to anyone with a high school diploma or its equivalent. For more information on admissions, contact the Regional Campuses admissions offices.

International Students: All international students must provide proof of English language proficiency (unless they meet specific exceptions) by earning a minimum 525 TOEFL score (71 on the Internet-based version), minimum 75 MELAB score, minimum 6.0 IELTS score or minimum 48 PTE Academic score, or by completing the ELS level 112 Intensive Program. For more information, visit the admissions website for international students.

Transfer Students: Students who have attended any other educational institution after graduating from high school must apply as undergraduate transfer students. For more information, visit the admissions website for transfer students.

Former Students: Former Kent State students or graduates who have not attended another college or university since Kent State may complete the reenrollment or reinstatement form on the University Registrar’s website. Admission policies for undergraduate students may be found in the University Catalog’s Academic Policies.

Some programs may require that students meet certain requirements before progressing through the program. For programs with progression requirements, the information is shown on the program’s Coursework tab.

Note: Applicants should understand that this is a math-intensive program. Students admitted to the program are expected to demonstrate prerequisite knowledge on a math placement exam (the ALEKS exam) prior to starting their first semester. Students who fail to obtain the minimum score required to place into the required math courses are at risk of delaying graduation.
Program Requirements

Major Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
</table>

Major Requirements (courses count in major GPA)

- **BA 44152**
 PROJECT MANAGEMENT
 3
- or **ENGR 36620**
 PROJECT MANAGEMENT AND TEAM DYNAMICS (WIC)
 3
- or **ENG 20002**
 INTRODUCTION TO TECHNICAL WRITING
 3
- **ENGR 11001**
 INTRODUCTION TO ENGINEERING
 2
- **ENGR 11002**
 INTRODUCTION TO ENGINEERING LABORATORY
 1
- **ENGR 13586**
 COMPUTER AIDED DESIGN I
 3
- or **ENGR 13587**
 COMPUTER AIDED DESIGN I LABORATORY
 3
- or **MERT 12001**
 COMPUTER-AIDED DESIGN
 3
- **ENGR 20000**
 PROFESSIONAL DEVELOPMENT IN ENGINEERING
 1
- **ENGR 20002**
 MATERIALS AND PROCESSES
 3
- **ENGR 23585**
 COMPUTER AIDED DESIGN II
 3
- **ENGR 30001**
 APPLIED THERMODYNAMICS
 3
- **ENGR 31000**
 CULTURAL DYNAMICS TECHNOLOGY (DIVD)
 3
- or **ENGR 31016**
 MANUFACTURING TECHNOLOGY
 3
- or **ENGR 31065**
 CAST METALS
 3
- or **ENGR 33031**
 PROGRAMMABLE LOGIC CONTROLLERS
 3
- or **ENGR 33033**
 HYDRAULICS/PNEUMATICS
 3
- or **ENGR 33111**
 STATICS AND STRENGTH OF MATERIALS
 3-6
- or **ENGR 33700**
 QUALITY TECHNIQUES
 3
- or **ENGR 33870**
 FACILITY DESIGN AND MATERIAL HANDLING
 3
- or **ENGR 35550**
 LAW AND ETHICS FOR ENGINEERS
 3
- or **ENGR 43080**
 INDUSTRIAL AND ENVIRONMENTAL SAFETY
 3
- or **ENGR 43550**
 COMPUTER-AIDED MANUFACTURING
 3
- **EERT 12000**
 ELECTRIC CIRCUITS I
 4
- or **EERT 12001**
 ELECTRIC CIRCUITS II
 4
- or **ENGR 21020**
 SURVEY OF ELECTRICITY AND ELECTRONICS
 4
- or **ENGR 21022**
 SURVEY OF ELECTRICITY AND ELECTRONICS LABORATORY
 4
- **MATH 11010**
 ALGEBRA FOR CALCULUS (KMC)R
 3
- **MATH 11022**
 TRIGONOMETRY (KMC)R
 3
- **PHY 13001**
 GENERAL COLLEGE PHYSICS I (KBS)
 4
- **PHY 13002**
 GENERAL COLLEGE PHYSICS II (KBS)
 4
- **PHY 13011**
 GENERAL COLLEGE PHYSICS LABORATORY I (KBS)
 1
- **PHY 13022**
 GENERAL COLLEGE PHYSICS LABORATORY II (KBS)
 1
- **PSYC 11762**
 GENERAL PSYCHOLOGY (DIVD)
 3
- **PSYC 31773**
 INDUSTRIAL PSYCHOLOGY
 3
- **UC 10001**
 FLASHES 101
 1
- Kent Core Composition
 6
- Kent Core Humanities and Fine Arts (minimum one course from each)
 9

Concentrations

Choose from the following:
23-24

Foundry Technology Concentration Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
</table>

Minimum Total Credit Hours: 120

1. Some course options may require coursework outside of this program.
2. A minimum C grade must be earned to fulfill the writing-intensive requirement.

Applied Engineering and Technology Management Concentration Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
</table>

Concentration Requirements (courses count in major GPA)

- **BA 24056**
 BUSINESS ANALYTICS I
 3
- **ENGR 27210**
 INTRODUCTION TO SUSTAINABILITY
 3
- **ENGR 43899**
 APPLIED ENGINEERING CAPSTONE (ELR)
 3
- **ENGR 47200**
 SYSTEMS ENGINEERING
 3

Additional Requirements (courses do not count in major GPA)

- **ECON 22060**
 PRINCIPLES OF MICROECONOMICS (KSS)
 3
- General Electives (total credit hours depends on earning 120 credit hours, including 39 upper-division credit hours)
 8

Minimum Total Credit Hours: 23

1. Students wishing to complete internships and/or cooperative education opportunities are encouraged to do so during the summer. Those wishing to take off a semester for a co-op will likely delay graduation by a year.

Foundry Technology Concentration Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
</table>

Minimum Total Credit Hours: 4

Concentration Requirements (courses count in major GPA)

- **ENGR 33364**
 METALLURGY AND MATERIALS SCIENCE
 3
- **ENGR 41065**
 SOLID MODELING AND SOLIDIFICATION SIMULATION
 3
- **ENGR 45099**
 CAPSTONE: FOUNDRY TOOLING AND PATTERN MAKING (ELR)
 3

Additional Requirements (courses do not count in major GPA)

- **CHEM 10050**
 FUNDAMENTALS OF CHEMISTRY (KBS)
 3
- **COMM 15000**
 INTRODUCTION TO HUMAN COMMUNICATION (KADL)
 3
- **HRM 34180**
 HUMAN RESOURCE MANAGEMENT
 3
- **MGMT 24163**
 PRINCIPLES OF MANAGEMENT
 3
- Kent Core Social Sciences (must be from two disciplines)
 3

Minimum Total Credit Hours: 24

Graduation Requirements

<table>
<thead>
<tr>
<th>Minimum Major GPA</th>
<th>Minimum Overall GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.250</td>
<td>2.000</td>
</tr>
</tbody>
</table>

Roadmaps

Applied Engineering and Technology Management Concentration

This roadmap is a recommended semester-by-semester plan of study for this major. However, courses designated as critical (!) must be completed in the semester listed to ensure a timely graduation.
Kent State University Catalog 2024-2025

Applied Engineering - B.S.

Semester One	ENGR 13586	COMPUTER AIDED DESIGN I	3
	& ENGR 13587	and COMPUTER AIDED DESIGN I LABORATORY or COMPUTER-AIDED DESIGN	
	or MERT 12001		
	ENGR 20002	MATERIALS AND PROCESSES	3
	! MATH 11010	ALGEBRA FOR CALCULUS (KMCR)	3
	UC 10001	FLASHES 101	1
	Kent Core Requirement		
	Kent Core Requirement	3	
	Kent Core Requirement	3	
Credit Hours	16		

Semester Two	ENGR 11001	INTRODUCTION TO ENGINEERING	2
	ENGR 11002	INTRODUCTION TO ENGINEERING LABORATORY	1
	ENGR 23585	COMPUTER AIDED DESIGN II	3
	! MATH 11022	TRIGONOMETRY (KMCR)	3
	PSYC 11762	GENERAL PSYCHOLOGY (DIVD) (KSS)	3
	Kent Core Requirement		
	Kent Core Requirement	3	
Credit Hours	15		

Semester Three	BA 24056	BUSINESS ANALYTICS I	3
	! ENG 20002	INTRODUCTION TO TECHNICAL WRITING	3
	ENGR 31016	MANUFACTURING TECHNOLOGY	3
	! PHY 13001	GENERAL COLLEGE PHYSICS I (KBS)	4
	! PHY 13021	GENERAL COLLEGE PHYSICS LABORATORY I (KBS) (KLAB)	1
Credit Hours	14		

Semester Four	! ECON 22060	PRINCIPLES OF MICROECONOMICS (KSS)	3
	ENGR 20000	PROFESSIONAL DEVELOPMENT IN ENGINEERING	1
	! ENGR 31065	CAST METALS	3
	ENGR 33033	HYDRAULICS/PNEUMATICS	3
	! PHY 13002	GENERAL COLLEGE PHYSICS II (KBS)	4
	! PHY 13022	GENERAL COLLEGE PHYSICS LABORATORY II (KBS) (KLAB)	1
Credit Hours	15		

Semester Five	ENGR 33111	STATICS AND STRENGTH OF MATERIALS or STATICS and STRENGTH OF MATERIALS	3-6
	or MERT 22005	and MERT 22007	
	ENGR 33700	QUALITY TECHNIQUES	3
	! PSYC 31773	INDUSTRIAL PSYCHOLOGY	3
	Electrical Circuits Electives	4-7	
	General Elective	3	
Credit Hours	16		

Semester Six	BA 44152	PROJECT MANAGEMENT	3
	or EMAT 41510	or PROJECT MANAGEMENT AND TEAM DYNAMICS (WIC)	
	or ENGR 36620	or PROJECT MANAGEMENT IN ENGINEERING	
	! ENGR 33031	PROGRAMMABLE LOGIC CONTROLLERS	3
	ENGR 33870	FACILITY DESIGN AND MATERIAL HANDLING	3
	Kent Core Requirement		
	Kent Core Requirement	3	
Credit Hours	15		

Semester Seven	ENGR 27210	INTRODUCTION TO SUSTAINABILITY	3
	ENGR 30001	APPLIED THERMODYNAMICS	3
	ENGR 35550	LAW AND ETHICS FOR ENGINEERS	3
	ENGR 43550	COMPUTER-AIDED MANUFACTURING	3
	ENGR 47200	SYSTEMS ENGINEERING	3
Credit Hours	15		

Semester Eight	ENGR 31000	CULTURAL DYNAMICS TECHNOLOGY (DIVD) (WIC)	3
	ENGR 43080	INDUSTRIAL AND ENVIRONMENTAL SAFETY	3
	ENGR 43899	APPLIED ENGINEERING CAPSTONE (ELR)	3
	General Electives	5	
Credit Hours	14		

| Minimum Total Credit Hours: | 120 |

Foundry Technology Concentration

This roadmap is a recommended semester-by-semester plan of study for this major. However, courses designated as critical (!) must be completed in the semester listed to ensure a timely graduation.

Semester One	COMM 15000	INTRODUCTION TO HUMAN COMMUNICATION (KADL)	3
	ENGR 13586	COMPUTER AIDED DESIGN I	3
	& ENGR 13587	and COMPUTER AIDED DESIGN I LABORATORY or COMPUTER-AIDED DESIGN	
	or MERT 12001		
	ENGR 20002	MATERIALS AND PROCESSES	3
	! MATH 11010	ALGEBRA FOR CALCULUS (KMCR)	3
	UC 10001	FLASHES 101	1
	Kent Core Requirement	3	
Credit Hours	16		

Semester Two	CHEM 10050	FUNDAMENTALS OF CHEMISTRY (KBS)	3
	ENGR 11001	INTRODUCTION TO ENGINEERING	2
	ENGR 11002	INTRODUCTION TO ENGINEERING LABORATORY	1
	ENGR 23585	COMPUTER AIDED DESIGN II	3
	! MATH 11022	TRIGONOMETRY (KMCR)	3
	Kent Core Requirement	3	
Credit Hours	15		

Semester Three	! ENG 20002	INTRODUCTION TO TECHNICAL WRITING	3
	ENGR 31016	MANUFACTURING TECHNOLOGY	3
	! PHY 13001	GENERAL COLLEGE PHYSICS I (KBS)	4
	! PHY 13021	GENERAL COLLEGE PHYSICS LABORATORY I (KBS) (KLAB)	1
Credit Hours	15		

Semester Four	! ECON 22060	PRINCIPLES OF MICROECONOMICS (KSS)	3
	ENGR 20000	PROFESSIONAL DEVELOPMENT IN ENGINEERING	1
	! ENGR 33033	HYDRAULICS/PNEUMATICS	3
	! PHY 13002	GENERAL COLLEGE PHYSICS II (KBS)	4
	! PHY 13022	GENERAL COLLEGE PHYSICS LABORATORY II (KBS) (KLAB)	1
Credit Hours	15		

Semester Five	ENGR 33111	STATICS AND STRENGTH OF MATERIALS or STATICS and STRENGTH OF MATERIALS	3-6
	or MERT 22005	and MERT 22007	
	ENGR 33700	QUALITY TECHNIQUES	3
	! PSYC 31773	INDUSTRIAL PSYCHOLOGY	3
	Electrical Circuits Electives	4-7	
	General Elective	3	
Credit Hours	16		

Semester Six	BA 44152	PROJECT MANAGEMENT	3
	or EMAT 41510	or PROJECT MANAGEMENT AND TEAM DYNAMICS (WIC)	
	or ENGR 36620	or PROJECT MANAGEMENT IN ENGINEERING	
	! ENGR 33031	PROGRAMMABLE LOGIC CONTROLLERS	3
	ENGR 33870	FACILITY DESIGN AND MATERIAL HANDLING	3
	Kent Core Requirement		
	Kent Core Requirement	3	
Credit Hours	15		

Semester Seven	ENGR 27210	INTRODUCTION TO SUSTAINABILITY	3
	ENGR 30001	APPLIED THERMODYNAMICS	3
	ENGR 35550	LAW AND ETHICS FOR ENGINEERS	3
	ENGR 43550	COMPUTER-AIDED MANUFACTURING	3
	ENGR 47200	SYSTEMS ENGINEERING	3
Credit Hours	15		

Semester Eight	ENGR 31000	CULTURAL DYNAMICS TECHNOLOGY (DIVD) (WIC)	3
	ENGR 43080	INDUSTRIAL AND ENVIRONMENTAL SAFETY	3
	ENGR 43899	APPLIED ENGINEERING CAPSTONE (ELR)	3
	General Electives	5	
Credit Hours	14		

| Minimum Total Credit Hours: | 120 |
Kent Core Requirement 3

Semester Five

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 30001</td>
<td>APPLIED THERMODYNAMICS</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 31000</td>
<td>CULTURAL DYNAMICS TECHNOLOGY (DIVD)</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 31773</td>
<td>INDUSTRIAL PSYCHOLOGY</td>
<td>3</td>
</tr>
</tbody>
</table>

Electrical Circuits Electives 4-7

Kent Core Requirement 3

Credit Hours 15

Semester Six

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA 44152</td>
<td>PROJECT MANAGEMENT</td>
<td>3</td>
</tr>
<tr>
<td>ENAT 41510</td>
<td>DYNAMICS (WIC)</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 31065</td>
<td>CAST METALS</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 33031</td>
<td>PROGRAMMABLE LOGIC CONTROLERS</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 33364</td>
<td>METALLURGY AND MATERIALS SCIENCE</td>
<td>3</td>
</tr>
</tbody>
</table>

Kent Core Requirement 3

Credit Hours 16

Semester Seven

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 33111</td>
<td>STATICS AND STRENGTH OF MATERIALS</td>
<td>3-6</td>
</tr>
<tr>
<td>MERT 22005</td>
<td>or STATICS and STRENGTH OF MATERIALS</td>
<td></td>
</tr>
<tr>
<td>MERT 22007</td>
<td>and</td>
<td></td>
</tr>
<tr>
<td>ENGR 33700</td>
<td>QUALITY TECHNIQUES</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 35550</td>
<td>LAW AND ETHICS FOR ENGINEERS</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 41065</td>
<td>SOLID MODELING AND SOLIDIFICATION SIMULATION</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 43550</td>
<td>COMPUTER-AIDED MANUFACTURING</td>
<td>3</td>
</tr>
</tbody>
</table>

Kent Core Requirement 3

Credit Hours 15

Semester Eight

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 33870</td>
<td>FACILITY DESIGN AND MATERIAL HANDLING</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 43080</td>
<td>INDUSTRIAL AND ENVIRONMENTAL SAFETY</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 45099</td>
<td>CAPSTONE: FOUNDRY TOOLING AND PATTERN MAKING (ELR)</td>
<td>3</td>
</tr>
<tr>
<td>HRM 34180</td>
<td>HUMAN RESOURCE MANAGEMENT</td>
<td>3</td>
</tr>
</tbody>
</table>

Kent Core Requirement 3

Credit Hours 15

Minimum Total Credit Hours: 121

University Requirements

All students in a bachelor’s degree program at Kent State University must complete the following university requirements for graduation.

NOTE: University requirements may be fulfilled in this program by specific course requirements. Please see Program Requirements for details.

- Flashes 101 (UC 10001) 1 credit hour
- Course is not required for students with 30+ transfer credits (excluding College Credit Plus) or age 21+ at time of admission.
- Diversity Domestic/Global (DIVD/DIVG) 2 courses
- Students must successfully complete one domestic and one global course, of which one must be from the Kent Core.
- Experiential Learning Requirement (ELR) varies

Students must successfully complete one course or approved experience.

Kent Core (see table below) 36-37 credit hours

Writing-Intensive Course (WIC) 1 course

Upper-Division Requirement 39 credit hours

Students must successfully complete 39 upper-division (numbered 30000 to 49999) credit hours to graduate.

Total Credit Hour Requirement 120 credit hours

Kent Core Requirements

- Kent Core Composition (KCMP) 6
- Kent Core Mathematics and Critical Reasoning (KMCR) 3
- Kent Core Humanities and Fine Arts (KHUM/KFA) (min one course each) 9
- Kent Core Social Sciences (KSS) (must be from two disciplines) 6
- Kent Core Basic Sciences (KBS/KLAB) (must include one laboratory) 6-7
- Kent Core Additional (KADL) 6

Total Credit Hours: 36-37

Program Learning Outcomes

Graduates of this program will be able to:

1. Apply knowledge, techniques, skills and modern tools of mathematics, science, engineering and technology to solve broadly defined engineering problems appropriate to the discipline.
2. Design systems, components or processes meeting specified needs for broadly defined engineering problems appropriate to the discipline.
3. Apply written, oral and graphical communication in broadly defined technical and non-technical environments, and an ability to identify and use appropriate technical literature.
4. Conduct standard tests, measurements and experiments and analyze and interpret the results to improve processes.
5. Function effectively as a member as well as a leader on technical teams.

The educational objectives of the program are the following:

1. Drive positive change in the community by engaging in careers in the areas of manufacturing, quality, engineering management, foundry operations or related fields in a manner that promotes excellence and integrity.
2. Practice forward-thinking through continued education by way of professional development, graduate education and other continued self-motivated learning.
3. Successfully navigate the ever-changing trajectory of the world, practicing compassion as you strive to meet your personal and professional goals.

Full Description

The Bachelor of Science degree in Applied Engineering successfully prepares graduates to apply basic engineering principles, engineering skills and management practices using a systems approach to provide leadership and solve applied technical problems that provide solutions
addressing societal needs and challenges. The program provides students instruction in basic math and science, engineering principles, processes, project management and personnel management. Students learn in the classroom, as well as through hands-on experiments and real-world internships.

Applicants to this program should understand that this is a math-intensive program. The degree program can also function as a completer degree for students with an associate degree in engineering technology.

The Applied Engineering major comprises the following concentrations:

- The Applied Engineering and Technology Management concentration provides a focus on the application of management, design and technical skills for system integration; the execution of new product designs; the improvement of manufacturing processes; and the management and direction of physical and/or technical functions of an organization. Students also understand materials, facility design, quality and safety.

- The Foundry Technology concentration prepares students for employment in the metal casting industry. Students complete coursework in materials and processes, cast metals, metallurgy and material science, solid modeling and solidification. In addition, students apply their knowledge and skills in the capstone course on foundry tooling and pattern making. They also gain experience with programmable logic controllers, hydraulics, pneumatics and computer-aided manufacturing.

Students may apply early to the Master of Engineering Technology degree and double count 9 credit hours of graduate courses toward both degree programs. See the Combined Bachelor’s/Master’s Degree Program Policy in the University Catalog for more information.