MECHATRONICS
ENGINEERING TECHNOLOGY - B.S.

College of Aeronautics and Engineering
www.kent.edu/cae

About This Program
Kent State’s Bachelor of Science degree in Mechatronics Engineering Technology is perfect for the person who enjoys hands-on approaches to problem solving that require knowledge of the integration between mechanical, electrical and computer systems. It prepares you for a career in designing, building, troubleshooting and operating advanced mechatronics systems. With hands-on experience, industry-standard tools and experienced faculty, you’ll gain the practical skills and knowledge needed to succeed in industry. Read more...

Contact Information
• cae@kent.edu | 330-672-2892
• Speak with an Advisor
• Chat with an Admissions Counselor

Program Delivery
• Delivery: In person
• Location: Kent Campus

Examples of Possible Careers and Salaries*
Electro-mechanical and mechatronics technologists and technicians
• 3.0% about as fast as the average
• 14,600 number of jobs
• $59,800 potential earnings

Electrical and electronic engineering technologists and technicians
• 1.5% slower than the average
• 125,800 number of jobs
• $67,550 potential earnings

Mechanical engineering technologists and technicians
• 3.1% about as fast as the average
• 43,500 number of jobs
• $58,230 potential earnings

Architectural and engineering managers
• 2.6% slower than the average
• 198,100 number of jobs
• $149,530 potential earnings

* Source of occupation titles and labor data comes from the U.S. Bureau of Labor Statistics’ Occupational Outlook Handbook. Data comprises projected percent change in employment over the next 10 years; nation-wide employment numbers; and the yearly median wage at which half of the workers in the occupation earned more than that amount and half earned less.

Admission Requirements
The university affirmatively strives to provide educational opportunities and access to students with varied backgrounds, those with special talents and adult students who graduated from high school three or more years ago.

First-Year Students on the Kent Campus: First-year admission policy on the Kent Campus is selective. Admission decisions are based upon cumulative grade point average, strength of high school college preparatory curriculum and grade trends. Students not admissible to the Kent Campus may be administratively referred to one of the seven regional campuses to begin their college coursework. For more information, visit the admissions website for first-year students.

First-Year Students on the Regional Campuses: First-year admission to Kent State’s campuses at Ashtabula, East Liverpool, Geauga, Salem, Stark, Trumbull and Tuscarawas, as well as the Twinsburg Academic Center, is open to anyone with a high school diploma or its equivalent. For more information on admissions, contact the Regional Campuses admissions offices.

International Students: All international students must provide proof of English language proficiency unless they meet specific exceptions. For more information, visit the admissions website for international students.

Transfer Students: Students who have attended any other educational institution after graduating from high school must apply as undergraduate transfer students. For more information, visit the admissions website for transfer students.

Former Students: Former Kent State students or graduates who have not attended another college or university since Kent State may complete the reenrollment or reinstatement form on the University Registrar’s website.

Admission policies for undergraduate students may be found in the University Catalog.

Some programs may require that students meet certain requirements before progressing through the program. For programs with progression requirements, the information is shown on the Coursework tab.

Program Requirements
Major Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 11000</td>
<td>INTRODUCTION TO ENGINEERING</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 13585</td>
<td>COMPUTER AIDED ENGINEERING GRAPHICS</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 15300</td>
<td>INTRODUCTION TO ENGINEERING ANALYSIS USING MATLAB®</td>
<td>2</td>
</tr>
</tbody>
</table>

Mechatronics Engineering Technology - B.S.
Mechatronics Engineering Technology - B.S.

Roadmap

This roadmap is a recommended semester-by-semester plan of study for this major. However, courses designated as critical (!) must be completed in the semester listed to ensure a timely graduation.

<table>
<thead>
<tr>
<th>Semester One</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 15000</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 20000</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 27210</td>
<td>3</td>
</tr>
<tr>
<td>PHY 13000</td>
<td>5</td>
</tr>
<tr>
<td>or PHY 23101</td>
<td>5</td>
</tr>
<tr>
<td>or PHY 13021</td>
<td>5</td>
</tr>
<tr>
<td>or PHY 23102</td>
<td>5</td>
</tr>
<tr>
<td>UC 10001</td>
<td>1</td>
</tr>
<tr>
<td>Mathematics Elective</td>
<td>3-5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Two</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 11000</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 15300</td>
<td>2</td>
</tr>
<tr>
<td>ENGR 15301</td>
<td>1</td>
</tr>
<tr>
<td>! PHY 13001</td>
<td>5</td>
</tr>
<tr>
<td>or PHY 23101</td>
<td>5</td>
</tr>
<tr>
<td>Mathematics Elective</td>
<td>3-5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Three</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 22060</td>
<td>3</td>
</tr>
</tbody>
</table>

Additional Requirements (courses do not count in major GPA)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 15000</td>
<td>INTRODUCTION TO HUMAN COMMUNICATION (KADL)</td>
<td>3</td>
</tr>
<tr>
<td>ECON 22060</td>
<td>PRINCIPLES OF MICROECONOMICS (KSS)</td>
<td>3</td>
</tr>
<tr>
<td>PHY 13001</td>
<td>GENERAL COLLEGE PHYSICS I (KBS)</td>
<td>5</td>
</tr>
<tr>
<td>or PHY 23101</td>
<td>GENERAL UNIVERSITY PHYSICS I (KBS) (KLAB)</td>
<td>5</td>
</tr>
<tr>
<td>or PHY 13021</td>
<td>GENERAL COLLEGE PHYSICS II (KBS) (KLAB)</td>
<td>5</td>
</tr>
<tr>
<td>or PHY 23102</td>
<td>GENERAL UNIVERSITY PHYSICS II (KBS) (KLAB)</td>
<td>5</td>
</tr>
<tr>
<td>UC 10001</td>
<td>FLASHES 101</td>
<td>1</td>
</tr>
</tbody>
</table>

Minimum Major GPA: 2.250

Minimum Overall GPA: 2.000

Graduation Requirements

- **Minimum Total Credit Hours:** 120

1. A minimum C grade must be earned to fulfill the writing-intensive requirement.
2. Students who wish to change their major to Mechatronics Engineering must take PHY 23101 and PHY 23102. Failing to do so will result in additional coursework.
3. Applicants to this program should understand that this is a math-intensive program. Students admitted to the program are expected to demonstrate prerequisite knowledge on a math placement exam (the ALEKS exam) prior to starting their first semester. Students who fail to obtain the minimum score required to place into MATH 12002 are at risk of delaying graduation.
ENGR 13585 COMPUTER AIDED ENGINEERING GRAPHICS 3
ENGR 20000 PROFESSIONAL DEVELOPMENT IN ENGINEERING 1

! PHY 13002 GENERAL COLLEGE PHYSICS II (KBS) 5
& PHY 13022 and GENERAL COLLEGE PHYSICS LABORATORY II (KBS) (KLAB) or
or PHY 23102 or GENERAL UNIVERSITY PHYSICS II (KBS) (KLAB)

Kent Core Requirement 3

Credit Hours 15

Semester Four
ENGR 23585 ADVANCED COMPUTER AIDED DESIGN 3
ENGR 33033 HYDRAULICS/PNEUMATICS 3
Electricity and Electronics Elective(s) 4-7
Programming Elective(s) 3-4
Kent Core Requirement 3

Credit Hours 16

Semester Five
ENGR 33031 PROGRAMMABLE LOGIC CONTROLLERS 3
ENGR 33041 CONTROL SYSTEMS 3
ENGR 33111 or MERT 22005
or MERT 22007
STATICS AND STRENGTH OF MATERIALS and STRENGTH OF MATERIALS

Kent Core Requirement 3

Credit Hours 15

Semester Six
ENGR 33032 PROGRAMMABLE LOGIC CONTROLLERS II 3
ENGR 33333 INDUSTRIAL ROBOTICS 3
ENGR 47200 SYSTEMS ENGINEERING 3
Technical Elective 3
Kent Core Requirement 3

Credit Hours 15

Semester Seven
ENGR 33222 DIGITAL DESIGN FOR COMPUTER ENGINEERING 3
ENGR 35550 LAW AND ETHICS FOR ENGINEERS 3
ENGR 43030 MECHATRONICS 3
ENGR 43580 COMPUTER-AIDED MACHINE DESIGN 3
General Elective 3

Credit Hours 15

Semester Eight
ENGR 31000 CULTURAL DYNAMICS TECHNOLOGY (DIVD) (WIC) 3
ENGR 43080 INDUSTRIAL AND ENVIRONMENTAL SAFETY 3
ENGR 43099 MECHATRONICS CAPSTONE (ELR) (WIC) 3
Kent Core Requirement 3

Credit Hours 14

Minimum Total Credit Hours: 120

University Requirements

All students in a bachelor's degree program at Kent State University must complete the following university requirements for graduation.

NOTE: University requirements may be fulfilled in this program by specific course requirements. Please see Program Requirements for details.

Kent Core Requirements

- Kent Core Composition (KCMP) 6
- Kent Core Mathematics and Critical Reasoning (KMCR) 3
- Kent Core Humanities and Fine Arts (KHUM/KFA) (min one course each) 9
- Kent Core Social Sciences (KSS) (must be from two disciplines) 6
- Kent Core Basic Sciences (KBS/KLAB) (must include one laboratory) 6-7
- Kent Core Additional (KADL) 6

Total Credit Hours: 36-37

Program Learning Outcomes

Graduates of this program will be able to:

1. Apply knowledge, techniques, skills and modern tools of mathematics, science, engineering and technology to solve broadly defined engineering problems appropriate to the discipline.
2. Design systems, components or processes meeting specified needs for broadly defined engineering problems appropriate to the discipline.
3. Apply written, oral and graphical communication in broadly defined technical and non-technical environments; and an ability to identify and use appropriate technical literature.
4. Conduct standard tests, measurements and experiments and analyze and interpret the results to improve processes.
5. Function effectively as a member as well as a leader on technical teams.

Full Description

The Bachelor of Science degree in Mechatronics Engineering Technology integrates mechanical, electrical, computer and controls. Mechatronics engineering technology revolves around the design, construction and operation of automated systems, robots and intelligent products, which result from the integration of software and hardware.

Using automated systems is becoming more popular for operating equipment/machinery in a host of situations, including on assembly and manufacturing lines, on automobiles and aircraft and in electrical power
generations to reduce labor costs, increase precision and accuracy and provide quality and safety for workers.

Graduates from the mechatronics engineering technology program manage and support the design, operation and analysis of mechanical and electrical devices connected with automated systems, robots and computer-integrated manufacturing. They can work in any company that develops, designs or manufactures and markets these devices. Opportunities exist in manufacturing sales as well as research.

Applicants to this program should understand that this is a math-intensive program.

Information on the program’s education objectives and student enrollment and graduation data can be found on the college website.

Students may apply early to the Master of Engineering Technology degree (Mechanical Engineering Technology concentration) and double count 9 credit hours of graduate courses toward both degree programs. See the Combined Bachelor’s/Master’s Degree Program policy in the University Catalog for more information.