MATHEMATICS FOR SECONDARY SCHOOL TEACHERS - M.A.

About This Program
The Master of Arts degree in Mathematics for Secondary School Teachers is a three-year program offered in the evenings and summer. Designed collaboratively by faculty in mathematical sciences and teacher education, the program is for in-service teachers and features both mathematics and education classes. The program does not lead to Ohio teacher licensure.

Contact Information
- Program Coordinator: Evgenia (Jenya) Soprunova | esopruno@kent.edu | 330-672-9086
- Connect with an Admissions Counselor: U.S. Student | International Student

Program Delivery
- Delivery: Mostly online
- Location: Kent Campus

Examples of Possible Careers and Salaries*
Mathematical science teachers, postsecondary
- 1.3% slower than the average
- 60,100 number of jobs
- $73,650 potential earnings

Career/technical education teachers, postsecondary
- 1.1% slower than the average
- 124,100 number of jobs
- $55,620 potential earnings

Middle school teachers, except special and career/technical education
- 3.6% about as fast as the average
- 627,100 number of jobs
- $60,810 potential earnings

Secondary school teachers, except special and career/technical education
- 3.8% about as fast as the average
- 1,050,800 number of jobs
- $62,870 potential earnings

Admission Requirements
- Bachelor's degree in mathematics or mathematics education (or in another discipline plus mathematics coursework equivalent to an undergraduate program in mathematics education) from an accredited college or university
- Minimum 2.750 undergraduate GPA on a 4.000 point scale
- Official transcript(s)
- Goal statement
- Résumé or curriculum vitae
- Three letters of recommendation
- English language proficiency - all international students must provide proof of English language proficiency (unless they meet specific exceptions) by earning one of the following:
 - Minimum 525 TOEFL PBT score (paper-based version)
 - Minimum 71 TOEFL IBT score (Internet-based version)
 - Minimum 74 MELAB score
 - Minimum 6.0 IELTS score
 - Minimum 50 PTE score
 - Minimum 100 Duolingo English test score

Application Deadlines
- Fall Semester: Rolling admissions
- Spring Semester: Rolling admissions
- Summer Term: Rolling admissions

Program Requirements
Major Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI 67224</td>
<td>TEACHING MATHEMATICS USING COMPUTERS AND CALCULATORS</td>
<td>3</td>
</tr>
<tr>
<td>CI 67225</td>
<td>RESEARCH IN MATHEMATICS EDUCATION</td>
<td>3</td>
</tr>
<tr>
<td>CI 67791</td>
<td>SEMINAR IN MATHEMATICS EDUCATION</td>
<td>3</td>
</tr>
<tr>
<td>MATH 64091</td>
<td>SEMINAR IN MATHEMATICS EDUCATION (repeatable)</td>
<td>6</td>
</tr>
</tbody>
</table>

Mathematics Electives, choose from the following:

- MATH 51021 THEORY OF MATRICES
- MATH 52001 ANALYSIS I
- MATH 5221 GRAPH THEORY AND COMBINATORICS
MATH 52041 ADVANCED CALCULUS
MATH 52201 NUMERICAL COMPUTING I
MATH 55021 EUCLIDEAN GEOMETRY
MATH 55022 LINEAR GEOMETRY
MATH 57011 THEORY OF NUMBERS
MATH 57057 ADVANCED CONCEPTS OF GEOMETRY
MATH 57067 ADVANCED CONCEPTS OF PROBABILITY AND STATISTICS
MATH 57077 ADVANCED CONCEPTS OF ALGEBRA

Culminating Requirement
MATH 69099 CAPSTONE PROJECT 2

Minimum Total Credit Hours: 32

Graduation Requirements
- Minimum 32 credit hours of graduate credit with minimum 16 credit hours at the 60000 level and 22 credit hours in mathematics
- Final presentation and report of the capstone project

Program Learning Outcomes
Graduates of this program will be able to:

1. Reason in mathematical arguments, including using precise definitions, articulating assumptions and reasoning logically to conclusions.
2. Engage effectively in problem solving, including exploring examples, devising and testing conjectures and assessing the correctness of solutions.
3. Approach mathematical problems creatively, including trying multiple approaches and modifying problems when necessary to make them more tractable.
4. Communicate mathematics clearly both orally and in writing.
5. Teach high school-level mathematics.
6. Understand and appreciate connections among different subdisciplines of mathematics.
7. Be aware of and understand a broad range of mathematical subdisciplines.
8. Obtain a broader and deeper understanding of algebra, geometry and analysis and their interpretation in the K-12 curriculum.