APPLIED MATHEMATICS - B.S.

College of Arts and Sciences

Department of Mathematical Sciences
www.kent.edu/math

About This Program

Our Bachelor of Science in Applied Mathematics program provides students with a strong foundation in mathematical theory and its application in real-world settings. With experienced faculty, cuttingedge technology and practical experience, you will gain the skills needed to solve complex problems in a variety of industries, from finance and insurance to science and engineering. Enroll now and unlock endless career possibilities with a degree in applied mathematics. Read more...

Contact Information

- Program Coordinator: Xiaoyu Zheng | xzheng3@kent.edu | 330-672-9089
- Speak with an Advisor
- Chat with an Admissions Counselor

Program Delivery

- Delivery:
- In person
- Location:
- Kent Campus

Examples of Possible Careers and Salaries*

Data scientists and mathematical science occupations, all other

- 30.9% much faster than the average
- 33,200 number of jobs
- \$98,230 potential earnings

Mathematical science teachers, postsecondary

- 1.3% slower than the average
- 60,100 number of jobs
- \$73,650 potential earnings

Mathematicians

- 3.0% about as fast as the average
- 2,900 number of jobs
- \$110,860 potential earnings

Statisticians

- 34.6% much faster than the average
- 42,700 number of jobs
- \$92,270 potential earnings
* Source of occupation titles and labor data comes from the U.S. Bureau of Labor Statistics'

Occupational Outlook Handbook. Data comprises projected percent change in employment over the next 10 years; nation-wide employment numbers; and the yearly median wage at
which half of the workers in the occupation earned more than that amount and half earned
less.

Admission Requirements

The university affirmatively strives to provide educational opportunities and access to students with varied backgrounds, those with special talents and adult students who graduated from high school three or more years ago.

First-Year Students on the Kent Campus: First-year admission policy on the Kent Campus is selective. Admission decisions are based upon cumulative grade point average, strength of high school college preparatory curriculum and grade trends. Students not admissible to the Kent Campus may be administratively referred to one of the seven regional campuses to begin their college coursework. For more information, visit the admissions website for first-year students.

First-Year Students on the Regional Campuses: First-year admission to Kent State's campuses at Ashtabula, East Liverpool, Geauga, Salem, Stark, Trumbull and Tuscarawas, as well as the Twinsburg Academic Center, is open to anyone with a high school diploma or its equivalent. For more information on admissions, contact the Regional Campuses admissions offices.

International Students: All international students must provide proof of English language proficiency (unless they meet specific exceptions) by earning a minimum 525 TOEFL score (71 on the Internet-based version), minimum 75 MELAB score, minimum 6.0 IELTS score or minimum 48 PTE Academic score, or by completing the ELS level 112 Intensive Program. For more information, visit the admissions website for international students.

Transfer Students: Students who have attended any other educational institution after graduating from high school must apply as undergraduate transfer students. For more information, visit the admissions website for transfer students.

Former Students: Former Kent State students or graduates who have not attended another college or university since Kent State may complete the reenrollment or reinstatement form on the University Registrar's website.

Admission policies for undergraduate students may be found in the University Catalog's Academic Policies.

Some programs may require that students meet certain requirements before progressing through the program. For programs with progression requirements, the information is shown on the program's Coursework tab.

Program Requirements

Major Requirements

MATH 12003	ANALYTIC GEOMETRY AND CALCULUS II (min C grade)	5
MATH 20011	DECISION-MAKING UNDER UNCERTAINTY ${ }^{2}$	3
MATH 21001	LINEAR ALGEBRA (min C grade)	3
MATH 22005	ANALYTIC GEOMETRY AND CALCULUS III (min C grade)	4
MATH 32044	ORDINARY DIFFERENTIAL EQUATIONS (min C grade)	3
MATH 40011	PROBABILITY THEORY AND APPLICATIONS (min C grade)	3
MATH 40012	THEORY OF STATISTICS (WIC) ${ }^{3}$	3
MATH 41021	THEORY OF MATRICES	3
MATH 42031	MATHEMATICAL MODELS AND DYNAMICAL SYSTEMS (min C grade)	3
MATH 42039	MODELING PROJECTS (ELR) (WIC) ${ }^{3}$	3
MATH 42201	NUMERICAL COMPUTING I (min C grade)	3
MATH 42202	NUMERICAL COMPUTING II	3
PHY 23101	GENERAL UNIVERSITY PHYSICS I (KBS) (KLAB)	5
PHY 23102	GENERAL UNIVERSITY PHYSICS II (KBS) (KLAB)	5
Allied Area Electives, choose from the following: ${ }^{4}$		6
BSCI 30050	HUMAN GENETICS	
BSCI 40020	BIOLOGY OF AGING	
CHEM 30105	ANALYTICAL CHEMISTRY I	
CHEM 30106	ANALYTICAL CHEMISTRY II	
CHEM 30301	INORGANIC CHEMISTRY I	
CHEM 40302	INORGANIC CHEMISTRY II	
CHEM 40303	INORGANIC CHEMISTRY III	
CHEM 40555	PHYSICAL CHEMISTRY I	
CHEM 40556	PHYSICAL CHEMISTRY II	
CHEM 40559	NANOMATERIALS	
CS 33007	INTRODUCTION TO DATABASE SYSTEM dESIGN	
CS 33101	STRUCTURE OF PROGRAMMING LANGUAGES	
CS 33211	OPERATING SYSTEMS	
CS 33901	SOFTWARE ENGINEERING	
CS 35101	COMPUTER ORGANIZATION	
CS 35201	COMPUTER COMMUNICATION NETWORKS	
CS 38101	INTRODUCTION TO GAME PROGRAMMING	
CS 43202	SYSTEMS ADMINISTRATION	
CS 43203	SYSTEMS PROGRAMMING	
CS 43301	SOFTWARE DEVELOPMENT FOR ROBOTICS	
CS 43305	ADVANCED DIGITAL DESIGN	
CS 43401	SECURE PROGRAMMING	
CS 44001	COMPUTER SCIENCE III-PROGRAMMING PATTERNS	
CS 44003	MOBILE APPS IN IOS PROGRAMMING	
CS 44105	WEB PROGRAMMING I	
CS 44106	WEB PROGRAMMING II	
CS 44201	ARTIFICIAL INTELLIGENCE	
CS 45203	COMPUTER NETWORK SECURITY	
CS 45231	INTERNET ENGINEERING	
CS 46101	DESIGN AND ANALYSIS OF ALGORITHMS	
CS 47101	COMPUTER GRAPHICS	
CS 47205	INFORMATION SECURITY	
CS 47206	DATA SECURITY AND PRIVACY	
CS 47207	DIGITAL FORENSICS	
CS 47221	INTRODUCTION TO CRYPTOLOGY	

CS 48101	GAME ENGINE CONCEPTS
ECON 32025	MONEY, CREDIT AND BANKING
ECON 32040	INTERMEDIATE MICROECONOMIC THEORY AND APPLICATIONS
ECON 32041	INTERMEDIATE MACROECONOMIC THEORY AND POLICY
ECON 32050	APPLIED ECONOMETRICS I (ELR)
ECON 42050	DATA ACQUISITION, PREPARATION AND VISUALIZATION
ESCI 31080	STRUCTURAL GEOLOGY
ESCI 32066	GEOMORPHOLOGY
ESCI 41025	GENERAL GEOPHYSICS
ESCI 41080	TECTONICS AND OROGENY
ESCI 42030	REMOTE SENSING
ESCI 42035	DATA ANALYSIS IN THE EARTH SCIENCES
FIN 36054	INTERMEDIATE CORPORATE FINANCE
FIN 36059	INTERMEDIATE INVESTMENTS
FIN 46055	ADVANCED DERIVATIVE SECURITIES
FIN 46064	INTERNATIONAL BUSINESS FINANCE
FIN 46067	ADVANCED PORTFOLIO ANALYSIS
GEOG 31062	FUNDAMENTALS OF METEOROLOGY
GEOG 31064	CLIMATE AND THE ENVIRONMENT
GEOG 34070	ECONOMIC GEOGRAPHY
GEOG 39002	STATISTICAL METHODS IN GEOGRAPHY
GEOG 41065	APPLIED CLIMATOLOGY
GEOG 49070	GEOGRAPHIC INFORMATION SCIENCE
GEOG 49080	ADVANCED GEOGRAPHIC INFORMATION SCIENCE
GEOG 49085	WEB AND MOBILE GEOGRAPHIC INFORMATION SCIENCE
GEOG 49162	CARTOGRAPHY
GEOG 49230	REMOTE SENSING
MATH 30055	MATHEMATICAL THEORY OF INTEREST
MATH 31011	PROOFS IN DISCRETE MATHEMATICS
MATH 40028	STATISTICAL LEARNING
MATH 40051	TOPICS IN PROBABILITY THEORY AND STOCHASTIC PROCESSES
MATH 40055	ACTUARIAL MATHEMATICS I (ELR) (WIC) ${ }^{3}$
MATH 40056	ACTUARIAL MATHEMATICS II
MATH 40059	STOCHASTIC ACTUARIAL MODELS
MATH 41001	MODERN ALGEBRA I (ELR) (WIC) ${ }^{3}$
MATH 41002	MODERN ALGEBRA II (ELR) (WIC) ${ }^{3}$
MATH 42001	ANALYSIS I (ELR) (WIC) ${ }^{3}$
MATH 42002	ANALYSIS II (ELR) (WIC) ${ }^{3}$
MATH 42011	MATHEMATICAL OPTIMIZATION
MATH 42021	GRAPH THEORY AND COMBINATORICS
MATH 42024	NUMBERS AND GAMES
MATH 42041	ADVANCED CALCULUS
MATH 42045	PARTIAL DIFFERENTIAL EQUATIONS
MATH 42048	COMPLEX VARIABLES
MATH 45011	DIFFERENTIAL GEOMETRY
MATH 45021	EUCLIDEAN GEOMETRY
MATH 45022	LINEAR GEOMETRY
MATH 46001	ELEMENTARY TOPOLOGY
MATH 47011	THEORY OF NUMBERS
MATH 47021	HISTORY OF MATHEMATICS
MATH 49992	INTERNSHIP IN MATHEMATICS (ELR)
PHIL 41035	PHILOSOPHY OF SCIENCE

PHIL 41038	INTERMEDIATE LOGIC
PHIL 41045	METALOGIC
PHY 34000	COSMOLOGY
PHY 35101	CLASSICAL MECHANICS
PHY 36001	INTRODUCTORY MODERN PHYSICS
PHY 36002	APPLICATIONS OF MODERN PHYSICS
PHY 44802	ASTROPHYSICS
PHY 45201	ELECTROMAGNETIC THEORY
PHY 45301	THERMAL PHYSICS
PHY 45401	MATHEMATICAL METHODS IN PHYSICS
PHY 45403	DATA ANALYSIS AND COMPUTATIONAL
PHY 45501	PHYSICS TECHNIQUES ELECTROMAGNETIC WAVES AND MODERN PHY 46101OPTICS PHY 46301 INTRODUCTION TO NUCLEAR AND PARTICLE PHY 46401 PHYSICS

Additional Requirements (courses do not count in major GPA)
UC $10001 \quad$ FLASHES 101
Foreign Language (see Foreign Language College Requirement below) 8
Kent Core Composition 6
Kent Core Humanities and Fine Arts (minimum one course from each) 9
Kent Core Social Sciences (must be from two disciplines) 3
Kent Core Additional 3

General Electives (total credit hours depends on earning 120 credit 7
hours, including 39 upper-division credit hours)

Concentrations

Choose from the following:	19
Applied Mathematics	
Computational Mathematics	
Financial Mathematics	
Probability and Statistics	$\mathbf{1 2 0}$
Minimum Total Credit Hours:	

${ }^{1}$ MATH 30011 , MATH 34001 and MATH 34002 cannot be applied toward the major requirements.
2 Minimum C grade required for the Computational Mathematics and the Probability and Statistics concentrations only.
${ }^{3}$ A minimum C grade must be earned to fulfill the writing-intensive requirement.
4 A course may only count for one requirement even though it may appear more than once.

Applied Mathematics Concentration Requirements

Code	Title	Credit Hours
Concentration Requirements (courses count in major GPA)		
MATH 42041	ADVANCED CALCULUS	3
MATH 42045	PARTIAL DIFFERENTIAL EQUATIONS	3
MATH 42048	COMPLEX VARIABLES	3

Additional Requirements (courses do not count in major GPA)	
Kent Core Social Sciences (must be from two disciplines)	3
Kent Core Additional	3
General Electives	4
Minimum Total Credit Hours:	$\mathbf{1 9}$

Computational Mathematics Concentration Requirements

Code	Title	Credit
		Hours
Concentration Requirements (courses count in major GPA)		
CS 23001	COMPUTER SCIENCE II: DATA STRUCTURES AND ABSTRACTION	4
MATH 23022	DISCRETE STRUCTURES FOR COMPUTER SCIENCE	3
MATH 40024	COMPUTATIONAL STATISTICS	3
MATH 42011	MATHEMATICAL OPTIMIZATION	3

Additional Requirements (courses do not count in major GPA)
Kent Core Social Sciences (must be from two disciplines) 3
Kent Core Additional 3

Financial Mathematics Concentration Requirements

Code	Title	Credit Hours
Concentration Requirements (courses count in major GPA)		
ACCT 23020	INTRODUCTION TO FINANCIAL ACCOUNTING	3
FIN 36053	BUSINESS FINANCE	3
MATH 40051	TOPICS IN PROBABILITY THEORY AND	3
STOCHASTIC PROCESSES		
MATH 42045	PARTIAL DIFFERENTIAL EQUATIONS	3
Additional Requirements (courses do not count in major GPA)		
ECON 22060	PRINCIPLES OF MICROECONOMICS (KSS)	3
ECON 22061	PRINCIPLES OF MACROECONOMICS (KSS)	3
General Elective		1
Minimum Total Credit Hours:	$\mathbf{1 9}$	

Probability and Statistics Concentration Requirements

Code Title	Credit
	Hours

Concentration Requirements (courses count in major GPA)

MATH 40015	APPLIED STATISTICS	3
MATH 40024	COMPUTATIONAL STATISTICS	3
MATH 40051	TOPICS IN PROBABILITY THEORY AND	3
	STOCHASTIC PROCESSES	

Additional Requirements (courses do not count in major GPA)
Kent Core Social Sciences (must be from two disciplines) 3
Kent Core Additional 3
General Electives 4

Minimum Total Credit Hours: 19

Graduation Requirements

Minimum Major GPA Minimum Overall GPA
2.000

- A minimum grade may be required in some courses
Foreign Language College Requirement, B.S.
- Students pursuing the Bachelor of Science degree in the College
of Arts and Sciences must complete 8 credit hours of foreign
language.
- The following programs are exempt from this requirement: The Bachelor of Science in Cybercriminology and the Bachelor of Science in Medical Laboratory Science. ${ }^{2}$
- Minimum Elementary I and II of the same language
${ }^{1}$ All students with prior foreign language experience should take the foreign language placement test to determine the appropriate level at which to start. Some students may start beyond the Elementary I level and will complete the requirement with fewer credit hours and courses. This may be accomplished by (1) passing a course beyond Elementary I through Intermediate II level; (2) receiving credit through one of the alternative credit programs offered by Kent State University; or (3) demonstrating language proficiency comparable to Elementary II of a foreign language. When students complete the requirement with fewer than 8 credit hours and two courses, they will complete remaining credit hours with general electives.
${ }^{2}$ The Bachelor of Science in Medical Laboratory Science exemption exists under another college policy (Three-Plus-One Programs). The Bachelor of Science in Cybercriminology exemption is due to its extensive collaboration with and contribution from the Information Technology program in the College of Applied and Technical Studies, which does not have a foreign language requirement.

Roadmaps

Applied Mathematics Concentration

This roadmap is a recommended semester-by-semester plan of study for this major. However, courses designated as critical (!) must be completed in the semester listed to ensure a timely graduation.

	Semester One		Credits 4
	$\begin{aligned} & \text { CS } 13001 \\ & \quad \text { or CS } 13011 \\ & \text { and } \\ & \text { CS } 13012 \end{aligned}$	COMPUTER SCIENCE I: PROGRAMMING AND PROBLEM SOLVING or COMPUTER SCIENCE IA: PROCEDURAL PROGRAMMING and COMPUTER SCIENCE IB: OBJECT ORIENTED PROGRAMMING	
$!$	MATH 12002	ANALYTIC GEOMETRY AND CALCULUS I (KMCR)	5
	UC 10001	FLASHES 101	1
	Foreign Language		4
	Kent Core Requirement		3
		Credit Hours	17
	Semester Two		
$!$	MATH 12003	ANALYTIC GEOMETRY AND CALCULUS II	5
	MATH 20011	DECISION-MAKING UNDER UNCERTAINTY	3
	Foreign Language		4
	Kent Core Requirement		3
		Credit Hours	15
	Semester Three		
	MATH 21001	LINEAR ALGEBRA	3
!	MATH 22005	ANALYTIC GEOMETRY AND CALCULUS III	4
	PHY 23101	GENERAL UNIVERSITY PHYSICS I (KBS) (KLAB)	5
	Kent Core Requirement		3
		Credit Hours	15
	Semester Four		
	MATH 41021	THEORY OF MATRICES	3
	PHY 23102	GENERAL UNIVERSITY PHYSICS II (KBS) (KLAB)	5
	Kent Core Requ	rement	3

Kent Core Requirement		3
	Credit Hours	14
Semester Five		
$!$	MATH 32044 ORDINARY DIFFERENTIAL EQUATIONS	3
!	MATH 42031 MATHEMATICAL MODELS AND DYNAMICAL or SYSTEMS MATH 42201 or NUMERICAL COMPUTING I	3
!	MATH 42041 ADVANCED CALCULUS or or COMPLEX VARIABLES MATH 42048	3
Allied Area Elective		3
Kent Core Requirement		3
	Credit Hours	15
Semester Six		
!	MATH 42039 MODELING PROJECTS (ELR) (WIC)or or NUMERICAL COMPUTING II MATH 42202	3
!	MATH 42045 PARTIAL DIFFERENTIAL EQUATIONS	3
Allied Area Elective		3
Kent Core Requirement		3
Kent Core Requirement		3
	Credit Hours	15
Semester Seven		
$!$	MATH 40011 PROBABILITY THEORY AND APPLICATIONS	3
!	MATH 42031 MATHEMATICAL MODELS AND DYNAMICAL or SYSTEMS MATH 42201 or NUMERICAL COMPUTING I	3
!	MATH 42041 ADVANCED CALCULUS or or COMPLEX VARIABLES MATH 42048	3
Kent Core Requirement		3
General Elective		3
	Credit Hours	15
Semester Eight		
!	MATH 40012 THEORY OF STATISTICS (WIC)	3
!	MATH 42039 MODELING PROJECTS (ELR) (WIC) or or NUMERICAL COMPUTING II MATH 42202	3
General Electives		8
	Credit Hours	14
	Minimum Total Credit Hours:	120

Computational Mathematics Concentration

This roadmap is a recommended semester-by-semester plan of study for this major. However, courses designated as critical (!) must be completed in the semester listed to ensure a timely graduation.

	Semester One		Credits 4
	$\begin{aligned} & \text { CS } 13001 \\ & \text { or CS } 13011 \\ & \text { and } \\ & \text { CS } 13012 \end{aligned}$	COMPUTER SCIENCE I: PROGRAMMING AND PROBLEM SOLVING or COMPUTER SCIENCE IA: PROCEDURAL PROGRAMMING and COMPUTER SCIENCE IB: OBJECT ORIENTED PROGRAMMING	
!	MATH 12002	ANALYTIC GEOMETRY AND CALCULUS I (KMCR)	5
	UC 10001	FLASHES 101	1
	Foreign Language		4
	Kent Core Requirement		3
		Credit Hours	17
	Semester Two		
	CS 23001	COMPUTER SCIENCE II: DATA STRUCTURES AND ABSTRACTION	4
!	MATH 12003	ANALYTIC GEOMETRY AND CALCULUS II	5
	MATH 20011	DECISION-MAKING UNDER UNCERTAINTY	3
	Foreign Language		4
		Credit Hours	16
	Semester Three		
	MATH 21001	LINEAR ALGEBRA	3
$!$	MATH 22005	ANALYTIC GEOMETRY AND CALCULUS III	4
	PHY 23101	GENERAL UNIVERSITY PHYSICS I (KBS) (KLAB)	5
	Kent Core Requirement		3
		Credit Hours	15
	Semester Four		
	MATH 41021	THEORY OF MATRICES	3
	PHY 23102	GENERAL UNIVERSITY PHYSICS II (KBS) (KLAB)	5
	Kent Core Requirement		3
	Kent Core Requirement		3
		Credit Hours	14
	Semester Five		
	MATH 23022	DISCRETE STRUCTURES FOR COMPUTER SCIENCE	3
!	MATH 32044	ORDINARY DIFFERENTIAL EQUATIONS	3
!	MATH 42031 or MATH 4220	MATHEMATICAL MODELS AND DYNAMICAL SYSTEMS or NUMERICAL COMPUTING I	3
	Allied Area Elective		3
	Kent Core Requirement		3
		Credit Hours	15
	Semester Six		
	MATH 42011	MATHEMATICAL OPTIMIZATION	3
!	MATH 42039 or MATH 42202	MODELING PROJECTS (ELR) (WIC) or NUMERICAL COMPUTING II	3
	Kent Core Requirement		3
	Kent Core Requirement		3
	Kent Core Requirement		3
		Credit Hours	15
	Semester Seven		
!	MATH 40011	PROBABILITY THEORY AND APPLICATIONS	3
	MATH 40024	COMPUTATIONAL STATISTICS	3
!	MATH 42031	MATHEMATICAL MODELS AND DYNAMICAL SYSTEMS	3

orMATH 42201			
Kent Core Requirement 3			
General Elective 3			
		Credit Hours	15
Semester Eight			
!	MATH 40012	THEORY OF STATISTICS (WIC)	3
!	MATH 42039 or MATH 42	MODELING PROJECTS (ELR) (WIC) or NUMERICAL COMPUTING II	3
Allied Area Elective			3
General Electives			4
Credit Hours			13
Minimum Total Credit Hours:			120

Financial Mathematics Concentration

This roadmap is a recommended semester-by-semester plan of study for this major. However, courses designated as critical (!) must be completed in the semester listed to ensure a timely graduation.

	Semester Six		
	FIN 36053	BUSINESS FINANCE	3
	MATH 40012	THEORY OF STATISTICS (WIC)	3
!	MATH 42039 or MATH 422	MODELING PROJECTS (ELR) (WIC) or NUMERICAL COMPUTING II	3
	Kent Core Req	rement	3
	Kent Core Requirement		3
		Credit Hours	15
	Semester Seven		
	MATH 32044	ORDINARY DIFFERENTIAL EQUATIONS	3
	MATH 40051	TOPICS IN PROBABILITY THEORY AND STOCHASTIC PROCESSES	3
$!$	MATH 42031 or MATH 422	MATHEMATICAL MODELS AND DYNAMICAL SYSTEMS or NUMERICAL COMPUTING I	3
	Allied Area Ele		3
	General Electi		3
		Credit Hours	15
	Semester Eight		
!	MATH 42039 or MATH 422	MODELING PROJECTS (ELR) (WIC) or NUMERICAL COMPUTING II	3
	MATH 42045	PARTIAL DIFFERENTIAL EQUATIONS	3
	Allied Area Elective		3
	General Electives		5
		Credit Hours	14
		Minimum Total Credit Hours:	120

Probability and Statistics Concentration

This roadmap is a recommended semester-by-semester plan of study for this major. However, courses designated as critical (!) must be completed in the semester listed to ensure a timely graduation.

	Semester One		Credits4
	$\begin{aligned} & \text { CS } 13001 \\ & \quad \text { or CS } 13011 \\ & \text { and } \\ & \text { CS } 13012 \end{aligned}$	COMPUTER SCIENCE I: PROGRAMMING AND PROBLEM SOLVING or COMPUTER SCIENCE IA: PROCEDURAL PROGRAMMING and COMPUTER SCIENCE IB: OBJECT ORIENTED PROGRAMMING	
$!$	MATH 12002	ANALYTIC GEOMETRY AND CALCULUS I (KMCR)	5
	UC 10001	FLASHES 101	1
	Foreign Language		4
	Kent Core Requirement		3
		Credit Hours	17
	Semester Two		
$!$	MATH 12003	ANALYTIC GEOMETRY AND CALCULUS II	5
	MATH 20011	DECISION-MAKING UNDER UNCERTAINTY	3
	Foreign Language		4
	Kent Core Requirement		3
		Credit Hours	15
	Semester Three		
	MATH 21001	LINEAR ALGEBRA	3
!	MATH 22005	ANALYTIC GEOMETRY AND CALCULUS III	4
	PHY 23101	GENERAL UNIVERSITY PHYSICS I (KBS) (KLAB)	5
	Kent Core Requirement		3
		Credit Hours	15
	Semester Four		
	MATH 41021	THEORY OF MATRICES	3

	PHY 23102	GENERAL UNIVERSITY PHYSICS II (KBS) (KLAB)	5
	Kent Core Requirement		3
	Kent Core Requirement		3
		Credit Hours	14
	Semester Five		
!	MATH 32044	ORDINARY DIFFERENTIAL EQUATIONS	3
	MATH 40011	PROBABILITY THEORY AND APPLICATIONS	3
!	MATH 42031 or MATH 422	MATHEMATICAL MODELS AND DYNAMICAL SYSTEMS or NUMERICAL COMPUTING I	3
	Allied Area Elective		3
	Kent Core Requirement		3
		Credit Hours	15
	Semester Six		
	MATH 40012	THEORY OF STATISTICS (WIC)	3
!	MATH 42039 or MATH 422	MODELING PROJECTS (ELR) (WIC) or NUMERICAL COMPUTING II	3
	Allied Area Elective		3
	Kent Core Requirement		3
	Kent Core Requirement		3
		Credit Hours	15
	Semester Seven		
	MATH 40024	COMPUTATIONAL STATISTICS	3
	MATH 40051	TOPICS IN PROBABILITY THEORY AND STOCHASTIC PROCESSES	3
!	MATH 42031 or MATH 422	MATHEMATICAL MODELS AND DYNAMICAL SYSTEMS or NUMERICAL COMPUTING I	3
	Kent Core Requirement		3
	General Elective		3
		Credit Hours	15
	Semester Eight		
	MATH 40015	APPLIED STATISTICS	3
!	MATH 42039 or MATH 422	MODELING PROJECTS (ELR) (WIC) or NUMERICAL COMPUTING II	3
	General Electives		8
		Credit Hours	14
		Minimum Total Credit Hours:	20

University Requirements

All students in a bachelor's degree program at Kent State University must complete the following university requirements for graduation.

NOTE: University requirements may be fulfilled in this program by specific course requirements. Please see Program Requirements for details.

Flashes 101 (UC 10001)
Course is not required for students with 30+ transfer credits (excluding College Credit Plus) or age 21+ at time of admission. hour
Diversity Domestic/Global (DIVD/DIVG)
Students must successfully complete one domestic and one global course, of which one must be from the Kent Core.
Experiential Learning Requirement (ELR)
Students must successfully complete one course or approved experience.

$\left.$| Kent Core (see table below) | $36-37$ credit
 hours |
| :--- | :--- |
| Writing-Intensive Course (WIC) | 1 course | | Students must earn a minimum C grade in the course. | 39 credit |
| :--- | :--- |
| hours | | \right\rvert\, | Spper-Division Requirement | 120 credit
 Students must successfully complete 39 upper-division (numbered |
| :--- | :--- |
| Total Credit Hour Requirement | |

Kent Core Requirements

Kent Core Composition (KCMP)	6
Kent Core Mathematics and Critical Reasoning (KMCR)	3
Kent Core Humanities and Fine Arts (KHUM/KFA) (min one course each)	9
Kent Core Social Sciences (KSS) (must be from two disciplines)	6
Kent Core Basic Sciences (KBS/KLAB) (must include one laboratory)	$6-7$
Kent Core Additional (KADL)	6
Total Credit Hours:	$\mathbf{3 6 - 3 7}$

Program Learning Outcomes

Graduates of this program will be able to:

1. Recognize problems with mathematical solutions from across disciplines.
2. Use precision and logical rigor to make both concrete and abstract conclusions.
3. Communicate and interact appropriately with different audiences.
4. Collaborate with others across disciplines in diverse contexts.
5. Use mathematical concepts and techniques in practical and applied problems.
6. Use technology to implement mathematical theory in applied contexts.

Full Description

The Bachelor of Science degree in Applied Mathematics emphasizes the tools most useful in science, engineering and technology applications: mathematical modeling, scientific computing and probability and statistics.

Students may apply early to the M.S. in Applied Mathematics and double count 9 credit hours of graduate courses toward both degree programs. See the Combined Bachelor's/Master's Degree Program policy in the University Catalog for more information.

The Applied Mathematics major comprises the following concentrations:

- The Applied Mathematics concentration emphasizes the classical aspects of the discipline, which are rooted in mathematical modeling and applications in the sciences. It couples well with the Physics minor or major.
- The Computational Mathematics concentration is designed for students with interests in numerical modeling and scientific computing. It pairs well with the Computer Science minor or major.
- The Financial Mathematics concentration prepares students for graduate programs in mathematical or computational finance or financial engineering.
- The Probability and Statistics concentration emphasizes the mathematics underlying processes that involve randomness and the mathematical tools used in the analysis of data.

