PURE MATHEMATICS - PH.D.

College of Arts and Sciences
Department of Mathematical Sciences
www.kent.edu/math

About This Program

The Ph.D. degree in Pure Mathematics is for students interested in becoming professional scholars, college and university teachers or independent workers in private, industrial or government research institutions. Kent State's pure mathematics Ph.D. program is one of six in the state public university system, and one of only two in Northeast Ohio. In broad terms, the faculty areas of research lie in functional analysis and operator theory, Lie representation theory, approximation theory, finite groups, character theory, number theory, large scale systems of equations, numerical and scientific computation and probability and stochastic processes.

Contact Information

- Program Coordinator: Artem Zvavitch | azvavitc@kent.edu | 330-672-3316
- Connect with an Admissions Counselor. U.S. Student | International Student

Program Delivery

- Delivery:
- In person
- Location:
- Kent Campus

Examples of Possible Careers and Salaries*

Data scientists and mathematical science occupations, all other

- 30.9% much faster than the average
- 33,200 number of jobs
- \$98,230 potential earnings

Mathematical science teachers, postsecondary

- 1.3% slower than the average
- 60,100 number of jobs
- \$73,650 potential earnings

Mathematicians

- 3.0% about as fast as the average
- 2,900 number of jobs
- \$110,860 potential earnings

Natural sciences managers

- 4.8% about as fast as the average
- 71,400 number of jobs
- \$137,940 potential earnings

Secondary school teachers, except special and career/ technical education

- 3.8% about as fast as the average
- 1,050,800 number of jobs
- \$62,870 potential earnings

Statisticians

- 34.6% much faster than the average
- 42,700 number of jobs
- \$92,270 potential earnings
* Source of occupation titles and labor data comes from the U.S. Bureau of Labor Statistics Occupational Outlook Handbook. Data comprises projected percent change in employment over the next 10 years; nation-wide employment numbers; and the yearly median wage at which half of the workers in the occupation earned more than that amount and half earned less

For more information about graduate admissions, visit the graduate admission website. For more information on international admissions, visit the international admission website.

Admission Requirements

- Passage of the departmental qualifying examination at the master's level in algebra and analysis
- Master's degree from an accredited university or college
- Minimum 3.000 GPA on a 4.000-point scale
- Official transcript(s)
- Goal Statement
- Résumé or vita
- Three letters of recommendation
- English language proficiency - all international students must provide proof of English language proficiency (unless they meet specific exceptions to waive) by earning one of the following: ${ }^{1}$
- Minimum 71 TOEFL iBT score
- Minimum 6.0 IELTS score
- Minimum 50 PTE score
- Minimum 100 DET score
${ }^{1}$ International applicants who do not meet the above test scores may be considered for conditional admission.

Application Deadlines

- Fall Semester
- Application deadline: March 1
- Spring Semester
- Application deadline: October 1
- Summer Term
- Application deadline: March 1

Applications submitted after these deadlines will be considered on a spaceavailable basis.

Program Requirements
 Major Requirements

Graduation Requirements

Minimum Major GPA	Minimum Overall GPA
-	3.000

- Students present at least one seminar during their graduate career.

Candidacy for Degree

This examination will be a comprehensive examination in the field of the major subject, and will be a substantially deeper test than the qualifying examination.

Program Learning Outcomes

Graduates of this program will be able to:

1. Understand and appreciate connections among different subdisciplines of mathematics.
2. Be aware of and understand a broad range of mathematical subdisciplines.
3. Obtain a broader and deeper understanding of core mathematics subdisciplines of algebra and analysis.
4. Obtain a deep understanding of some subdiscipline.
5. Reason in mathematical arguments at a deep level, including using precise definitions, articulating assumptions and reasoning logically to conclusions.
6. Engage effectively in problem solving, including exploring examples, devising and testing conjectures and assessing the correctness of solutions.
7. Approach mathematical problems creatively, including trying multiple approaches and modifying problems when necessary to make them more tractable.
8. Develop and carry out a research program in mathematics.
